Implications of the degree of saturation on the mechanical behaviour of a slow-moving landslide in the Three Gorges region, China

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Miguel Cueva, Enrico Soranzo, Ahsan Saif, Shun Wang, Wei Wu
{"title":"Implications of the degree of saturation on the mechanical behaviour of a slow-moving landslide in the Three Gorges region, China","authors":"Miguel Cueva,&nbsp;Enrico Soranzo,&nbsp;Ahsan Saif,&nbsp;Shun Wang,&nbsp;Wei Wu","doi":"10.1007/s10064-025-04237-8","DOIUrl":null,"url":null,"abstract":"<div><p>Slow-moving landslides are typically characterised by pre-existing shear zones composed of thick, clay-rich, and mechanically weak soil layers that exhibit heightened sensitivity to changes in moisture content and hydrological conditions. These zones, often governed by variations in suction and degree of saturation, play a critical role in the stability and long-term behaviour of slow-moving landslides. In this study, we investigate the influence of the degree of saturation on the mechanical properties of shear-zone soils from a reactivated slow-moving landslide in the Three Gorges Reservoir area, China. A series of laboratory experiments, including consolidation, reversal direct shear, and ring-shear tests, were conducted on reconstituted shear-zone soil samples at varying degrees of saturation. The test results indicate that increasing the degree of saturation has a marked impact on the compressibility of the soils, with saturated samples exhibiting greater compressibility and unsaturated samples demonstrating reduced compressibility. Both shear tests indicate that higher saturation leads to a reduction in peak and residual shear strength, likely due to elevated pore water pressures and a decrease in inter-particle bonding forces. These insights emphasise the need to account for varying degrees of saturation when analysing the mechanical behaviour of slow-moving landslides, contributing to an improved understanding of their deformation patterns and failure mechanisms.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-025-04237-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04237-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Slow-moving landslides are typically characterised by pre-existing shear zones composed of thick, clay-rich, and mechanically weak soil layers that exhibit heightened sensitivity to changes in moisture content and hydrological conditions. These zones, often governed by variations in suction and degree of saturation, play a critical role in the stability and long-term behaviour of slow-moving landslides. In this study, we investigate the influence of the degree of saturation on the mechanical properties of shear-zone soils from a reactivated slow-moving landslide in the Three Gorges Reservoir area, China. A series of laboratory experiments, including consolidation, reversal direct shear, and ring-shear tests, were conducted on reconstituted shear-zone soil samples at varying degrees of saturation. The test results indicate that increasing the degree of saturation has a marked impact on the compressibility of the soils, with saturated samples exhibiting greater compressibility and unsaturated samples demonstrating reduced compressibility. Both shear tests indicate that higher saturation leads to a reduction in peak and residual shear strength, likely due to elevated pore water pressures and a decrease in inter-particle bonding forces. These insights emphasise the need to account for varying degrees of saturation when analysing the mechanical behaviour of slow-moving landslides, contributing to an improved understanding of their deformation patterns and failure mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信