Blow up, Growth and Decay of Solutions for Class of a Coupled Nonlinear Viscoelastic Kirchhoff Equations with Variable Exponents and Fractional Boundary Conditions
Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Rashid Jan
{"title":"Blow up, Growth and Decay of Solutions for Class of a Coupled Nonlinear Viscoelastic Kirchhoff Equations with Variable Exponents and Fractional Boundary Conditions","authors":"Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Rashid Jan","doi":"10.1007/s10255-024-1150-3","DOIUrl":null,"url":null,"abstract":"<div><p>We examine a quasilinear system of viscoelastic equations in this study that have fractional boundary conditions, dispersion, source, and variable-exponents. We discovered that the solution of the system is global and constrained under the right assumptions about the relaxation functions and initial conditions. After that, it is demonstrated that the blow-up has negative initial energy. Subsequently, the growth of solutions is demonstrated with positive initial energy, and the general decay result in the absence of the source term is achieved by using an integral inequality due to Komornik.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"344 - 374"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1150-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We examine a quasilinear system of viscoelastic equations in this study that have fractional boundary conditions, dispersion, source, and variable-exponents. We discovered that the solution of the system is global and constrained under the right assumptions about the relaxation functions and initial conditions. After that, it is demonstrated that the blow-up has negative initial energy. Subsequently, the growth of solutions is demonstrated with positive initial energy, and the general decay result in the absence of the source term is achieved by using an integral inequality due to Komornik.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.