Mei-qin Wei, Ya-ping Mao, Ingo Schiermeyer, Zhao Wang
{"title":"Ramsey and Gallai-Ramsey Numbers of Cycles and Books","authors":"Mei-qin Wei, Ya-ping Mao, Ingo Schiermeyer, Zhao Wang","doi":"10.1007/s10255-025-0009-6","DOIUrl":null,"url":null,"abstract":"<div><p>Given two non-empty graphs <i>G, H</i> and a positive integer <i>k</i>, the Gallai-Ramsey number gr<sub><i>k</i></sub>(<i>G</i>: <i>H</i>) is defined as the minimum integer <i>N</i> such that for all <i>n</i> ≥ <i>N</i>, every exact <i>k</i>-edge-coloring of <i>K</i><sub><i>n</i></sub> contains either a rainbow copy of <i>G</i> or a monochromatic copy of <i>H</i>. Denote gr<sub><i>k</i></sub>′(<i>G</i>: <i>H</i>) as the minimum integer <i>N</i> such that for all <i>n</i> ≥ <i>N</i>, every edge-coloring of <i>K</i><sub><i>n</i></sub> using at most <i>k</i> colors contains either a rainbow copy of <i>G</i> or a monochromatic copy of <i>H</i>. In this paper, we get some exact values or bounds for gr<sub><i>k</i></sub>(<i>P</i><sub>5</sub>: <i>H</i>) and gr<sub><i>k</i></sub>′(<i>P</i><sub>5</sub>: <i>H</i>), where <i>H</i> is a cycle or a book graph. In addition, our results support a conjecture of Li, Besse, Magnant, Wang and Watts in 2020.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"425 - 440"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0009-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Given two non-empty graphs G, H and a positive integer k, the Gallai-Ramsey number grk(G: H) is defined as the minimum integer N such that for all n ≥ N, every exact k-edge-coloring of Kn contains either a rainbow copy of G or a monochromatic copy of H. Denote grk′(G: H) as the minimum integer N such that for all n ≥ N, every edge-coloring of Kn using at most k colors contains either a rainbow copy of G or a monochromatic copy of H. In this paper, we get some exact values or bounds for grk(P5: H) and grk′(P5: H), where H is a cycle or a book graph. In addition, our results support a conjecture of Li, Besse, Magnant, Wang and Watts in 2020.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.