{"title":"Analogy of Fan-type Condition on Weak Cycle Partition of Graphs","authors":"Xiao-dong Chen, Qing Ji, Zhi-quan Hu","doi":"10.1007/s10255-025-0008-7","DOIUrl":null,"url":null,"abstract":"<div><p>For a graph <i>G</i> of order <i>n</i> and a positive integer <i>k</i>, a <i>k</i>-weak cycle partition of <i>G</i>, called <i>k</i>-WCP, is a sequence of vertex disjoint subgraphs <i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, ⋯, <i>H</i><sub><i>k</i></sub> of <i>G</i> with <span>\\(\\bigcup\\nolimits_{i=1}^{k} V(H_{i})=V(G)\\)</span>, where <i>H</i><sub><i>i</i></sub> is isomorphic to <i>K</i><sub>1</sub>, <i>K</i><sub>2</sub> or a cycle. Let <i>σ</i><sub>2</sub>(<i>G</i>) = min{<i>d</i>(<i>x</i>) + <i>d</i>(<i>y</i>): <i>xy</i> ∉ <i>E</i>(<i>G</i>), <i>x, y</i> ∈ <i>V</i>(<i>G</i>)}. Hu and Li [Discrete Math. 307(2007)] proved that if <i>G</i> is a graph of order <i>n</i> ≥ <i>k</i> + 12 with a <i>k</i>-WCP and <span>\\(\\sigma_{2}(G) \\geq {{2n+k-4} \\over 3}\\)</span>, then <i>G</i> contains a <i>k</i>-WCP with at most one subgraph isomorphic to <i>K</i><sub>2</sub>. In this paper, we generalize their result on the analogy of Fan-type condition that <span>\\(\\max\\{{d(x),d(y)}\\} \\geq {{2n+k-4} \\over 6}\\)</span> for each pair of nonadjacent vertices <i>x, y</i> ∈ <i>V</i>(<i>G</i>).</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"525 - 535"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0008-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a graph G of order n and a positive integer k, a k-weak cycle partition of G, called k-WCP, is a sequence of vertex disjoint subgraphs H1, H2, ⋯, Hk of G with \(\bigcup\nolimits_{i=1}^{k} V(H_{i})=V(G)\), where Hi is isomorphic to K1, K2 or a cycle. Let σ2(G) = min{d(x) + d(y): xy ∉ E(G), x, y ∈ V(G)}. Hu and Li [Discrete Math. 307(2007)] proved that if G is a graph of order n ≥ k + 12 with a k-WCP and \(\sigma_{2}(G) \geq {{2n+k-4} \over 3}\), then G contains a k-WCP with at most one subgraph isomorphic to K2. In this paper, we generalize their result on the analogy of Fan-type condition that \(\max\{{d(x),d(y)}\} \geq {{2n+k-4} \over 6}\) for each pair of nonadjacent vertices x, y ∈ V(G).
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.