Xin Chen, Lu Yang, Xiao-Nan Wang, Li Xiong, Peng-Fan Chen, Hai-Long Zhou, Xiao-Fei Lan, Yong-Sheng Huang, Yang-Fan He
{"title":"High-energy proton beam generation via combined radiation pressure acceleration and laser wakefield acceleration in modulated plasma channels","authors":"Xin Chen, Lu Yang, Xiao-Nan Wang, Li Xiong, Peng-Fan Chen, Hai-Long Zhou, Xiao-Fei Lan, Yong-Sheng Huang, Yang-Fan He","doi":"10.1140/epjd/s10053-025-00977-0","DOIUrl":null,"url":null,"abstract":"<p>High-energy proton beams are essential for fundamental research and applied physics. The combined acceleration mechanism based on radiation pressure acceleration has made great progress in obtaining high-energy protons. However, Rayleigh–Taylor instability (RTI) is still a potential influencing factor that will limit the quality of high-energy proton beams. Different from the previous suppression and neglect of RTI, this paper introduces a parabolic density plasma channel to accelerate protons by virtue of the characteristics of RTI. Three-dimensional Particle-in-cell simulations reveal that this scheme achieves high-energy protons with cut-off energy of 39 <span>\\(\\textrm{GeV}\\)</span>, total charge of 0.97 <span>\\(\\textrm{nC}\\)</span>, and the emittance of 1.12 <span>\\(\\mathrm{{mm}}\\;\\mathrm{{mrad}}\\)</span> in both the <i>y</i> and <i>z</i> directions. There are locally distributed electrons in the parabolic density plasma channel, and the focusing field around them can effectively focus protons. Compared with the uniform density plasma channel, the parabolic density plasma channel can significantly improve the quality of the proton beam, which could offer significant guidance for the generation and application of high-energy proton beams.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"79 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-025-00977-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-energy proton beams are essential for fundamental research and applied physics. The combined acceleration mechanism based on radiation pressure acceleration has made great progress in obtaining high-energy protons. However, Rayleigh–Taylor instability (RTI) is still a potential influencing factor that will limit the quality of high-energy proton beams. Different from the previous suppression and neglect of RTI, this paper introduces a parabolic density plasma channel to accelerate protons by virtue of the characteristics of RTI. Three-dimensional Particle-in-cell simulations reveal that this scheme achieves high-energy protons with cut-off energy of 39 \(\textrm{GeV}\), total charge of 0.97 \(\textrm{nC}\), and the emittance of 1.12 \(\mathrm{{mm}}\;\mathrm{{mrad}}\) in both the y and z directions. There are locally distributed electrons in the parabolic density plasma channel, and the focusing field around them can effectively focus protons. Compared with the uniform density plasma channel, the parabolic density plasma channel can significantly improve the quality of the proton beam, which could offer significant guidance for the generation and application of high-energy proton beams.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.