High-Power, High-Repetition Short-Pulse Laser Driver Using Direct-Drive D-Mode GaN HEMT

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ching-Yao Liu;Chun-Hsiung Lin;Hao-Chung Kuo;Yu-Heng Hong;Edward-Yi Chang;Wei-Hua Chieng
{"title":"High-Power, High-Repetition Short-Pulse Laser Driver Using Direct-Drive D-Mode GaN HEMT","authors":"Ching-Yao Liu;Chun-Hsiung Lin;Hao-Chung Kuo;Yu-Heng Hong;Edward-Yi Chang;Wei-Hua Chieng","doi":"10.1109/OJPEL.2025.3550034","DOIUrl":null,"url":null,"abstract":"This paper proposes a short-pulse laser driver using direct-drive depletion-mode gallium nitride high-electron-mobility-transistor (DDD GaN HEMT) device. Known for its low on-resistance, high switching performance, normally-off operation, and reliability, DDD GaN devices are becoming popular in power applications. In this work, an in-house D-mode GaN HEMT with a blocking voltage of 200 V and on-resistance of 18 mΩ is used in a short-pulse laser driver for the optical phased array (OPA) applications. To achieve higher spatial resolution, the laser repetition rate must be in the tens of MHz range. Therefore, the dynamic behavior of device is first characterized by the double-pulse test. Additionally, the push-pull based laser driver actively controls the load capacitor charging time and the laser pulse width, thereby ensuring stable operation at high repetition rates. The output characteristics of switch-controlled (SC) short-pulse laser driver are simplified to switch turn-on time, stray inductance, and the input voltage. Finally, the experimental results achieved a short pulse width of less than 5 ns, high repetition rate of 50 MHz, propagation delay of less than 1.5 ns and peak power of 175 W, meeting the requirements for the specified object detection application.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"474-484"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10921718","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10921718/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a short-pulse laser driver using direct-drive depletion-mode gallium nitride high-electron-mobility-transistor (DDD GaN HEMT) device. Known for its low on-resistance, high switching performance, normally-off operation, and reliability, DDD GaN devices are becoming popular in power applications. In this work, an in-house D-mode GaN HEMT with a blocking voltage of 200 V and on-resistance of 18 mΩ is used in a short-pulse laser driver for the optical phased array (OPA) applications. To achieve higher spatial resolution, the laser repetition rate must be in the tens of MHz range. Therefore, the dynamic behavior of device is first characterized by the double-pulse test. Additionally, the push-pull based laser driver actively controls the load capacitor charging time and the laser pulse width, thereby ensuring stable operation at high repetition rates. The output characteristics of switch-controlled (SC) short-pulse laser driver are simplified to switch turn-on time, stray inductance, and the input voltage. Finally, the experimental results achieved a short pulse width of less than 5 ns, high repetition rate of 50 MHz, propagation delay of less than 1.5 ns and peak power of 175 W, meeting the requirements for the specified object detection application.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信