ViLNM: Visual-Language Noise Modeling for Text-to-Image Person Retrieval

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Guolin Xu;Yong Feng;Yanying Chen;Guofan Duan;Mingliang Zhou
{"title":"ViLNM: Visual-Language Noise Modeling for Text-to-Image Person Retrieval","authors":"Guolin Xu;Yong Feng;Yanying Chen;Guofan Duan;Mingliang Zhou","doi":"10.1109/LSP.2025.3553424","DOIUrl":null,"url":null,"abstract":"Text-to-image person retrieval (TPR) focuses on finding a specific person based on the textual description, and most methods implicitly assume the training image-text pairs are correctly aligned. In practice, the image-text pairs exist under-correlated or false-correlated due to the low quality of the images and annotation errors. Meanwhile, remarkable similarities between different person identities may lead to a mismatch between text and image. To tackle the two issues, we present a Visual-Language Noise Modeling (ViLNM) method that successfully captures robust cross-modal associations even with noise. Specifically, we design a Noise Token Aware (NTA) module that eliminates the words in the textual description that do not match the image, utilizing the matched words to establish a more reliable association. Besides, to enhance the recognition ability of the model for different person identities, we propose a Joint Inter and Intra-Modal Contrastive Loss (JII) and Local Aggregation (LA) module to increase the feature differences between different person identities. We conduct comprehensive experiments on three public benchmarks, and ViLNM performs best.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1386-1390"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10935662/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Text-to-image person retrieval (TPR) focuses on finding a specific person based on the textual description, and most methods implicitly assume the training image-text pairs are correctly aligned. In practice, the image-text pairs exist under-correlated or false-correlated due to the low quality of the images and annotation errors. Meanwhile, remarkable similarities between different person identities may lead to a mismatch between text and image. To tackle the two issues, we present a Visual-Language Noise Modeling (ViLNM) method that successfully captures robust cross-modal associations even with noise. Specifically, we design a Noise Token Aware (NTA) module that eliminates the words in the textual description that do not match the image, utilizing the matched words to establish a more reliable association. Besides, to enhance the recognition ability of the model for different person identities, we propose a Joint Inter and Intra-Modal Contrastive Loss (JII) and Local Aggregation (LA) module to increase the feature differences between different person identities. We conduct comprehensive experiments on three public benchmarks, and ViLNM performs best.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信