{"title":"Blind Deconvolution of Graph Signals: Robustness to Graph Perturbations","authors":"Chang Ye;Gonzalo Mateos","doi":"10.1109/LSP.2025.3553064","DOIUrl":null,"url":null,"abstract":"We study blind deconvolution of signals defined on the nodes of an undirected graph. Although observations are bilinear functions of both unknowns, namely the forward convolutional filter coefficients and the graph signal input, a filter invertibility requirement along with input sparsity allow for an efficient linear programming reformulation. Unlike prior art that relied on perfect knowledge of the graph eigenbasis, here we derive stable recovery conditions in the presence of small graph perturbations. We also contribute a provably convergent robust algorithm, which alternates between blind deconvolution of graph signals and eigenbasis denoising in the Stiefel manifold. Reproducible numerical tests showcase the algorithm's robustness under several graph eigenbasis perturbation models.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1381-1385"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10933521/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We study blind deconvolution of signals defined on the nodes of an undirected graph. Although observations are bilinear functions of both unknowns, namely the forward convolutional filter coefficients and the graph signal input, a filter invertibility requirement along with input sparsity allow for an efficient linear programming reformulation. Unlike prior art that relied on perfect knowledge of the graph eigenbasis, here we derive stable recovery conditions in the presence of small graph perturbations. We also contribute a provably convergent robust algorithm, which alternates between blind deconvolution of graph signals and eigenbasis denoising in the Stiefel manifold. Reproducible numerical tests showcase the algorithm's robustness under several graph eigenbasis perturbation models.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.