Transmission Map-Guided Joint Source-Channel Coding for Underwater Semantic Communication

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Simeng Cheng;Zhigang Jin;Lixiang Chang;Jiawei Liang;Haoyong Li;Yishan Su;Gen Li
{"title":"Transmission Map-Guided Joint Source-Channel Coding for Underwater Semantic Communication","authors":"Simeng Cheng;Zhigang Jin;Lixiang Chang;Jiawei Liang;Haoyong Li;Yishan Su;Gen Li","doi":"10.1109/JSEN.2025.3542396","DOIUrl":null,"url":null,"abstract":"Joint source-channel coding (JSCC) for semantic communication (SemCom) has achieved significant progress. However, due to the degradation of underwater images, directly using JSCC for underwater SemCom leads to inadequate semantic extraction. To this end, this article proposes a transmission map-guided JSCC (TGJSCC) for underwater SemCom to better extract and transmit the semantic information of underwater degradation images, called TGJSCC. Specifically, we design the TGJSCC encoder to extract abundant semantic information of underwater degraded images. TGJSCC encoder first uses the transmission map generated by the underwater imaging model to help JSCC locate the focal regions in underwater degraded images, and then computes the global information in the latent space to obtain abundant semantic information. To transmit semantic information over the limited underwater channel, the semantic importance compression module (SICM) is proposed to compress semantic information while retaining useful information. Finally, the TGJSCC decoder is designed to reconstruct raw underwater degraded images from the semantic information transmitted by the underwater channel. The experimental results and analysis demonstrate that compared with the traditional separation source-channel coding (SSCC) methods and JSCC methods, the underwater SemCom based on TGJSCC not only extracts abundant semantic information of underwater degradation images, but also recovers the high-precision images.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"12198-12209"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10902136/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Joint source-channel coding (JSCC) for semantic communication (SemCom) has achieved significant progress. However, due to the degradation of underwater images, directly using JSCC for underwater SemCom leads to inadequate semantic extraction. To this end, this article proposes a transmission map-guided JSCC (TGJSCC) for underwater SemCom to better extract and transmit the semantic information of underwater degradation images, called TGJSCC. Specifically, we design the TGJSCC encoder to extract abundant semantic information of underwater degraded images. TGJSCC encoder first uses the transmission map generated by the underwater imaging model to help JSCC locate the focal regions in underwater degraded images, and then computes the global information in the latent space to obtain abundant semantic information. To transmit semantic information over the limited underwater channel, the semantic importance compression module (SICM) is proposed to compress semantic information while retaining useful information. Finally, the TGJSCC decoder is designed to reconstruct raw underwater degraded images from the semantic information transmitted by the underwater channel. The experimental results and analysis demonstrate that compared with the traditional separation source-channel coding (SSCC) methods and JSCC methods, the underwater SemCom based on TGJSCC not only extracts abundant semantic information of underwater degradation images, but also recovers the high-precision images.
基于传输图制导的水下语义通信联合源信道编码
面向语义通信(SemCom)的联合信源信道编码(JSCC)已经取得了重大进展。然而,由于水下图像的退化,直接使用JSCC进行水下SemCom会导致语义提取不足。为此,本文提出了一种用于水下SemCom的传输映射引导的JSCC (TGJSCC),可以更好地提取和传输水下退化图像的语义信息,称为TGJSCC。具体来说,我们设计了TGJSCC编码器来提取水下退化图像丰富的语义信息。TGJSCC编码器首先利用水下成像模型生成的传输图帮助JSCC定位水下退化图像中的焦点区域,然后在潜在空间中计算全局信息,获得丰富的语义信息。为了在有限的水下信道上传输语义信息,提出了语义重要性压缩模块(SICM)对语义信息进行压缩,同时保留有用信息。最后,设计了TGJSCC解码器,根据水下信道传输的语义信息重构水下退化原始图像。实验结果和分析表明,与传统的分离源信道编码(SSCC)方法和JSCC方法相比,基于TGJSCC的水下SemCom不仅提取了丰富的水下退化图像语义信息,而且恢复了高精度图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信