Effects of Transverse Compressive Stress on CORC Cables Under Various Mechanical Support Conditions

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Guo;Shengchen Xue;Michael D. Sumption;Edward W. Collings
{"title":"Effects of Transverse Compressive Stress on CORC Cables Under Various Mechanical Support Conditions","authors":"Yang Guo;Shengchen Xue;Michael D. Sumption;Edward W. Collings","doi":"10.1109/TASC.2025.3544606","DOIUrl":null,"url":null,"abstract":"CORC ReBCO cables are promising conductors for the next generation of high-performance cables for high-field accelerator magnets. However, because significant mechanical stress is inevitable in high field magnet applications, the deformation and damage of these cables under large stresses should be explored. Focusing on high field accelerator dipole inserts for a moment, various mechanical configurations for the winding are under consideration, which may affect cable performance. Therefore, the relationship between mechanical support conditions and the mechanical performance of CORC ReBCO cable under transverse compressive stress should be explored. In this study, the effects of transverse pressure on CORC cables with either side support during pressure application, or epoxy impregnation, or both, were investigated. Several segments of a particular CORC cable were used in four different mechanical configurations; (i) as received, (ii) unpotted but with side support, (iii) potted without side support, and (iv) potted and with side support. A material Testing System (MTS model 43) was utilized to compress our samples up to 30 kN in four different supporting conditions as listed above. Samples were autopsied using optical as well as scanning electron microscopy after the completion of the mechanical tests. As a result, we found that the support conditions enhance the mechanical performance of the CORC cable by extending the elastic-plastic transition load to a larger stress level, and we also observe cleavage cracks after the completion of the compressive stress test.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-6"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10900406/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

CORC ReBCO cables are promising conductors for the next generation of high-performance cables for high-field accelerator magnets. However, because significant mechanical stress is inevitable in high field magnet applications, the deformation and damage of these cables under large stresses should be explored. Focusing on high field accelerator dipole inserts for a moment, various mechanical configurations for the winding are under consideration, which may affect cable performance. Therefore, the relationship between mechanical support conditions and the mechanical performance of CORC ReBCO cable under transverse compressive stress should be explored. In this study, the effects of transverse pressure on CORC cables with either side support during pressure application, or epoxy impregnation, or both, were investigated. Several segments of a particular CORC cable were used in four different mechanical configurations; (i) as received, (ii) unpotted but with side support, (iii) potted without side support, and (iv) potted and with side support. A material Testing System (MTS model 43) was utilized to compress our samples up to 30 kN in four different supporting conditions as listed above. Samples were autopsied using optical as well as scanning electron microscopy after the completion of the mechanical tests. As a result, we found that the support conditions enhance the mechanical performance of the CORC cable by extending the elastic-plastic transition load to a larger stress level, and we also observe cleavage cracks after the completion of the compressive stress test.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信