Enhanced Fiber Bragg Grating Interrogation Using Deep Learning and Fabry-Pérot Liquid Crystal: A CGAN-CNN for Improved Wavelength Detection

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Minyechil Alehegn Tefera;Cheng-Kai Yao;Hao-Kuan Lee;Ssu-Han Liu;Yibeltal Chanie Manie;Ming-Che Chan;Peng-Chun Peng
{"title":"Enhanced Fiber Bragg Grating Interrogation Using Deep Learning and Fabry-Pérot Liquid Crystal: A CGAN-CNN for Improved Wavelength Detection","authors":"Minyechil Alehegn Tefera;Cheng-Kai Yao;Hao-Kuan Lee;Ssu-Han Liu;Yibeltal Chanie Manie;Ming-Che Chan;Peng-Chun Peng","doi":"10.1109/JSEN.2025.3543132","DOIUrl":null,"url":null,"abstract":"In this article, we propose a novel method that integrates deep learning with Fabry-Pérot liquid crystal (FP-LC) technology for fiber Bragg grating (FBG) interrogation. The use of FP-LC enhances the measurement range and enables high sensitivity in FBG sensors, making them appropriate for a wide range of applications requiring precise and responsive sensing. However, collecting a large amount of real experimental FBG sensor data is time-consuming, technically challenging, and resource-intensive. To address this issue, we utilize a conditional generative adversarial network (CGAN) to generate a sufficient amount of synthetic training data. The CGAN generates data conditioned on real FBG sensor data, ensuring that the generated data closely look like real experimental data distributions, which is crucial for effective model training. Moreover, we proposed a convolutional neural network (CNN) method to solve crosstalk problems, to improve sensing accuracy, and to precisely detect the peak wavelength of each FBG sensor. The experimental results demonstrated that the proposed CGAN technique effectively generates a large amount of data to improve the performance of the proposed CNN model. Furthermore, the results proved that the CNN trained on CGAN-generated data significantly improves the detection speed and accuracy of central wavelength measurements compared to traditional approaches. Hence, the proposed system is cost-effective, easy to set up for experiments, increases the feasibility and portability of modularization, fast and flexible, overcoming data shortages, and improving the sensing accuracy of wavelength detection for FBG sensor systems.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"11123-11130"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10906334/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose a novel method that integrates deep learning with Fabry-Pérot liquid crystal (FP-LC) technology for fiber Bragg grating (FBG) interrogation. The use of FP-LC enhances the measurement range and enables high sensitivity in FBG sensors, making them appropriate for a wide range of applications requiring precise and responsive sensing. However, collecting a large amount of real experimental FBG sensor data is time-consuming, technically challenging, and resource-intensive. To address this issue, we utilize a conditional generative adversarial network (CGAN) to generate a sufficient amount of synthetic training data. The CGAN generates data conditioned on real FBG sensor data, ensuring that the generated data closely look like real experimental data distributions, which is crucial for effective model training. Moreover, we proposed a convolutional neural network (CNN) method to solve crosstalk problems, to improve sensing accuracy, and to precisely detect the peak wavelength of each FBG sensor. The experimental results demonstrated that the proposed CGAN technique effectively generates a large amount of data to improve the performance of the proposed CNN model. Furthermore, the results proved that the CNN trained on CGAN-generated data significantly improves the detection speed and accuracy of central wavelength measurements compared to traditional approaches. Hence, the proposed system is cost-effective, easy to set up for experiments, increases the feasibility and portability of modularization, fast and flexible, overcoming data shortages, and improving the sensing accuracy of wavelength detection for FBG sensor systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信