Interfacial extracellular electron uptake is linked to nitrate respiration in the marine heterotroph, Thalassospira xiamenensis SN3

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Joshua D. Sackett , Gabriel P. Tonucci , Annette R. Rowe
{"title":"Interfacial extracellular electron uptake is linked to nitrate respiration in the marine heterotroph, Thalassospira xiamenensis SN3","authors":"Joshua D. Sackett ,&nbsp;Gabriel P. Tonucci ,&nbsp;Annette R. Rowe","doi":"10.1016/j.bioelechem.2025.108976","DOIUrl":null,"url":null,"abstract":"<div><div><em>Thalassospira</em> species are ubiquitous marine bacteria with poorly understood ecology, and some have been implicated in iron corrosion. To better elucidate the mechanisms and ecological implications of extracellular electron transfer (EET) in oxidative processes, we conducted genomic and bioelectrochemical characterization of <em>Thalassospira xiamenensis</em> strain SN3, an obligate heterotroph isolated from coastal marine sediment cathode-oxidizing enrichments. Physiologic and genomic analyses indicate that SN3 lacks the capacity for lithoautotrophic growth and lacks homologs to genes canonically involved in EET. Bioelectrochemical characterization of SN3 cells shows that inward EET requires a terminal electron acceptor (respiration). Deletion of nitrate reductase catalytic subunit <em>napA</em> abolished current consumption and catalytic activity under nitrate-reducing conditions. Media exchange experiments demonstrate that inward EET in SN3 is facilitated by direct contact with the electrode, with a formal midpoint potential of −153 ± 16 mV vs. SHE. Through deletion of the formate dehydrogenase <em>fdhABCD</em> and electrochemical characterization of mutant cells, we show that inward EET is not a function of Fdh enzyme sorption to the electrode, as has been demonstrated for other organisms. This provides further evidence of a cell-mediated and contact-dependent EET mechanism. This work provides a foundation for investigating this metabolically versatile organism's yet uncharacterized mechanism of EET.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108976"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000799","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thalassospira species are ubiquitous marine bacteria with poorly understood ecology, and some have been implicated in iron corrosion. To better elucidate the mechanisms and ecological implications of extracellular electron transfer (EET) in oxidative processes, we conducted genomic and bioelectrochemical characterization of Thalassospira xiamenensis strain SN3, an obligate heterotroph isolated from coastal marine sediment cathode-oxidizing enrichments. Physiologic and genomic analyses indicate that SN3 lacks the capacity for lithoautotrophic growth and lacks homologs to genes canonically involved in EET. Bioelectrochemical characterization of SN3 cells shows that inward EET requires a terminal electron acceptor (respiration). Deletion of nitrate reductase catalytic subunit napA abolished current consumption and catalytic activity under nitrate-reducing conditions. Media exchange experiments demonstrate that inward EET in SN3 is facilitated by direct contact with the electrode, with a formal midpoint potential of −153 ± 16 mV vs. SHE. Through deletion of the formate dehydrogenase fdhABCD and electrochemical characterization of mutant cells, we show that inward EET is not a function of Fdh enzyme sorption to the electrode, as has been demonstrated for other organisms. This provides further evidence of a cell-mediated and contact-dependent EET mechanism. This work provides a foundation for investigating this metabolically versatile organism's yet uncharacterized mechanism of EET.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信