{"title":"Mycelial mass, microbial lipids and γ-linolenic acid (GLA) by Cunninghamella elegans cultivated on agro-industrial residues","authors":"Gabriel Vasilakis , Afef Gamraoui , Dimitris Karayannis , Nikos Giannakis , Abdelwaheb Chatti , Ioannis Politis , Panagiota Diamantopoulou , Seraphim Papanikolaou","doi":"10.1016/j.recm.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>In the current study, the Zygomycetes fungus <em>Cunninghamella elegans</em> NRRL Y-1392 was evaluated for its ability to grow in extracts derived from dried and ground agricultural residues, such as mushroom stalks and roots from hydroponically cultivated lettuces and produce poly-unsaturated fatty acids (PUFA) and γ-linolenic acid (GLA) rich lipids. Initially, the compositions of stalks and lettuce roots were analysed, and the fungus was batch-flask cultivated on six different commercial semi-defined substrates containing different sugars detected in stalks and roots to evaluate its catabolic ability. <em>C. elegans</em> was capable to assimilate all sugars, but at a lower rate in the case of arabinose. Subsequently, <em>C. elegans</em> was cultivated on tailor-made semi-defined commercial substrates, resembling hydrolysates containing carbohydrates found in mushroom stalks, under both nitrogen-excess and nitrogen-limited conditions, and resembling that of hydrolysates of roots, under nitrogen-excess conditions. Based on the results, under nitrogen-excess conditions, in the case of media resembling stalks hydrolysates, higher production values for biomass, PUFAs, and GLA were observed (20.3 g/L, 1906 mg/L, 668 mg/L), accompanied by high productivity values due to short cultivation periods, while under nitrogen limitation, high lipid accumulation (lipid in dry cell weight =48%, w/w) was presented, and lipids rich in oleic acid were produced. Finally, the fungus was cultivated on a medium derived from hot water-extraction applied to mushroom stalks, enriched with organic nitrogen sources. The fungus was successfully grown on the sugar-rich water-extract derived from mushroom stalks, resulting in dry biomass of 14.5 g/L, lipids of 1.8 g/L, with 15% (w/w) of GLA in cellular lipids.</div></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"4 1","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443324000436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study, the Zygomycetes fungus Cunninghamella elegans NRRL Y-1392 was evaluated for its ability to grow in extracts derived from dried and ground agricultural residues, such as mushroom stalks and roots from hydroponically cultivated lettuces and produce poly-unsaturated fatty acids (PUFA) and γ-linolenic acid (GLA) rich lipids. Initially, the compositions of stalks and lettuce roots were analysed, and the fungus was batch-flask cultivated on six different commercial semi-defined substrates containing different sugars detected in stalks and roots to evaluate its catabolic ability. C. elegans was capable to assimilate all sugars, but at a lower rate in the case of arabinose. Subsequently, C. elegans was cultivated on tailor-made semi-defined commercial substrates, resembling hydrolysates containing carbohydrates found in mushroom stalks, under both nitrogen-excess and nitrogen-limited conditions, and resembling that of hydrolysates of roots, under nitrogen-excess conditions. Based on the results, under nitrogen-excess conditions, in the case of media resembling stalks hydrolysates, higher production values for biomass, PUFAs, and GLA were observed (20.3 g/L, 1906 mg/L, 668 mg/L), accompanied by high productivity values due to short cultivation periods, while under nitrogen limitation, high lipid accumulation (lipid in dry cell weight =48%, w/w) was presented, and lipids rich in oleic acid were produced. Finally, the fungus was cultivated on a medium derived from hot water-extraction applied to mushroom stalks, enriched with organic nitrogen sources. The fungus was successfully grown on the sugar-rich water-extract derived from mushroom stalks, resulting in dry biomass of 14.5 g/L, lipids of 1.8 g/L, with 15% (w/w) of GLA in cellular lipids.