Cross-scale optimization of interfacial adhesion and thermal-mechanical performance in carbon fiber-reinforced polyimide composites through sizing agent evolution
Qiong Li , Xiaohui Yang , Xiong Li , Nan Wang , Xue Shen , Na Song , Tongle Xu , Peng Ding
{"title":"Cross-scale optimization of interfacial adhesion and thermal-mechanical performance in carbon fiber-reinforced polyimide composites through sizing agent evolution","authors":"Qiong Li , Xiaohui Yang , Xiong Li , Nan Wang , Xue Shen , Na Song , Tongle Xu , Peng Ding","doi":"10.1016/j.compscitech.2025.111174","DOIUrl":null,"url":null,"abstract":"<div><div>The modification of carbon fibers with sizing agents, as an alternative to incorporating nanoparticles, has emerged as a practical strategy to enhance the interfacial adhesion and improve the thermal and mechanical properties of carbon fiber-reinforced thermoplastic polyimide (CF/TPI) composites. However, the lack of comprehensive understanding of the behavior and transformation of sizing agents during composite processing limits the performance enhancement of the composites. In this study, the interfacial mechanisms of sizing agents are systematically analyzed, distinguishing between chemical bonding and physical interaction pathways, while addressing the stages of wetting, molecular diffusion, and interfacial crosslinking. By optimizing the balance between chemical and physical interfacial mechanisms, significant improvements in stress distribution and filler-matrix compatibility are achieved. A quantitative relationship between sizing agent concentration and interfacial evolution was established, enabling precise control of the interface formation stages, including diffusion and crosslinking. The thermal conductivity of the optimized CF/TPI composites is 490% of that of PI. When used as a heat sink, it reduces the LED center temperature by 26 °C, while maintaining a tensile strength of 73 MPa and a retention rate of 69% at 200 °C. These results indicate that the precise control of the sizing process improved stress transfer across the interface, reduced microstructural defects, and contributed to enhanced thermal management and structural durability. This work provides a novel perspective on the dynamic role of sizing agents in composite development and lays the groundwork for advanced design strategies to maximize the performance of polymer composites.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"266 ","pages":"Article 111174"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825001423","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The modification of carbon fibers with sizing agents, as an alternative to incorporating nanoparticles, has emerged as a practical strategy to enhance the interfacial adhesion and improve the thermal and mechanical properties of carbon fiber-reinforced thermoplastic polyimide (CF/TPI) composites. However, the lack of comprehensive understanding of the behavior and transformation of sizing agents during composite processing limits the performance enhancement of the composites. In this study, the interfacial mechanisms of sizing agents are systematically analyzed, distinguishing between chemical bonding and physical interaction pathways, while addressing the stages of wetting, molecular diffusion, and interfacial crosslinking. By optimizing the balance between chemical and physical interfacial mechanisms, significant improvements in stress distribution and filler-matrix compatibility are achieved. A quantitative relationship between sizing agent concentration and interfacial evolution was established, enabling precise control of the interface formation stages, including diffusion and crosslinking. The thermal conductivity of the optimized CF/TPI composites is 490% of that of PI. When used as a heat sink, it reduces the LED center temperature by 26 °C, while maintaining a tensile strength of 73 MPa and a retention rate of 69% at 200 °C. These results indicate that the precise control of the sizing process improved stress transfer across the interface, reduced microstructural defects, and contributed to enhanced thermal management and structural durability. This work provides a novel perspective on the dynamic role of sizing agents in composite development and lays the groundwork for advanced design strategies to maximize the performance of polymer composites.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.