{"title":"Utilization of fullerenes nanoparticles for ultrasound applications in developing a high-efficiency acoustic emission source","authors":"Huanhuan Yin, Zhihua Shao, Xueguang Qiao","doi":"10.1016/j.ultras.2025.107634","DOIUrl":null,"url":null,"abstract":"<div><div>Fullerenes have exhibited excellent performance in solar cells, electric transducer and catalysts. The rather high absorption coefficient, combined with its low specific heat capacity, as well as hydrophobicity and antioxidant, are key features for applications in acoustic emission (AE), which has never been reported. Here, we fabricate and characterize a flexible an AE source based on the fullerenes-polydimethylsiloxane (PDMS) composite. By controlling the composite concentration or thickness, the center frequency can be changed in laser ultrasound excitation. The assembled transducer simultaneously achieves relatively wide frequency range (10-dB bandwidth<span><math><mo>></mo></math></span>10 MHz) and efficient laser ultrasound conversion <span><math><mrow><mo>(</mo><mn>1</mn><mo>.</mo><mn>13</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span>. The mechanical robustness of the AE source is also quantitatively characterized in water. Notably, compared to graphene nano-flakes, the fullerenes exhibit a more than threefold increase in excitation amplitude. Owing to high-intensity ultrasound excitation of the fullerenes-PDMS composite, the structure characteristics of centimeter-scaled physical models are clearly resolved by irradiating the material as a laser-ultrasound source. To construct a compact fiber-optic exciter, the fullerenes-PDMS film is additionally applied to a fiber end via dip coating. The findings suggest that fullerenes possess significant competitive advantages as a high-efficiency AE source in the field of ultrasound applications.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"152 ","pages":"Article 107634"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X2500071X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fullerenes have exhibited excellent performance in solar cells, electric transducer and catalysts. The rather high absorption coefficient, combined with its low specific heat capacity, as well as hydrophobicity and antioxidant, are key features for applications in acoustic emission (AE), which has never been reported. Here, we fabricate and characterize a flexible an AE source based on the fullerenes-polydimethylsiloxane (PDMS) composite. By controlling the composite concentration or thickness, the center frequency can be changed in laser ultrasound excitation. The assembled transducer simultaneously achieves relatively wide frequency range (10-dB bandwidth10 MHz) and efficient laser ultrasound conversion . The mechanical robustness of the AE source is also quantitatively characterized in water. Notably, compared to graphene nano-flakes, the fullerenes exhibit a more than threefold increase in excitation amplitude. Owing to high-intensity ultrasound excitation of the fullerenes-PDMS composite, the structure characteristics of centimeter-scaled physical models are clearly resolved by irradiating the material as a laser-ultrasound source. To construct a compact fiber-optic exciter, the fullerenes-PDMS film is additionally applied to a fiber end via dip coating. The findings suggest that fullerenes possess significant competitive advantages as a high-efficiency AE source in the field of ultrasound applications.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.