Dingru Li , Yixin Shi , Sifei Yu , Beiying Zhang , Ziyi Huang , Fei Ling , Xiaofan Mao , Yuhua Deng , Mengyun Cai , Wei Luo
{"title":"NK cellular derived nanovesicles in tumor immunity","authors":"Dingru Li , Yixin Shi , Sifei Yu , Beiying Zhang , Ziyi Huang , Fei Ling , Xiaofan Mao , Yuhua Deng , Mengyun Cai , Wei Luo","doi":"10.1016/j.molimm.2025.03.018","DOIUrl":null,"url":null,"abstract":"<div><div>Natural Killer (NK) cells are a vital element of the innate immune system, and NK cell-based therapies have demonstrated efficacy against various malignancies. However, targeting solid tumors has been challenging due to the low infiltration of NK cells into tumors and the effective evasion strategies employed by tumors. Recent studies have shown that NK cell derived nanovesicles (NK-NV) can not only replicate the functions of NK cells but also offer more advantages in clinical applications. They are capable of transporting various cellular components such as proteins, nucleic acids, and lipids across distances, thereby facilitating intercellular communication among various cells within the tumor microenvironment (TME). With the progress in nanomedical technology, these vesicles can be engineered to carry a range of functional elements and therapeutic agents to enhance their antitumoral capabilities. In this review, we summarize the current available literature on NK-NVs, discuss their potential biological functions and the role of non-coding RNAs (ncRNAs), and explore their application in the treatment of solid tumors.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"182 ","pages":"Pages 54-61"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589025000896","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural Killer (NK) cells are a vital element of the innate immune system, and NK cell-based therapies have demonstrated efficacy against various malignancies. However, targeting solid tumors has been challenging due to the low infiltration of NK cells into tumors and the effective evasion strategies employed by tumors. Recent studies have shown that NK cell derived nanovesicles (NK-NV) can not only replicate the functions of NK cells but also offer more advantages in clinical applications. They are capable of transporting various cellular components such as proteins, nucleic acids, and lipids across distances, thereby facilitating intercellular communication among various cells within the tumor microenvironment (TME). With the progress in nanomedical technology, these vesicles can be engineered to carry a range of functional elements and therapeutic agents to enhance their antitumoral capabilities. In this review, we summarize the current available literature on NK-NVs, discuss their potential biological functions and the role of non-coding RNAs (ncRNAs), and explore their application in the treatment of solid tumors.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.