Microenvironment-responsive multi-enzyme cascade nanosystem for the treatment of early caries

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haowen Huang , Yu Wang , Xin Liu , Wanqiu Xue , Ruoxi Dai , Chris Ying Cao
{"title":"Microenvironment-responsive multi-enzyme cascade nanosystem for the treatment of early caries","authors":"Haowen Huang ,&nbsp;Yu Wang ,&nbsp;Xin Liu ,&nbsp;Wanqiu Xue ,&nbsp;Ruoxi Dai ,&nbsp;Chris Ying Cao","doi":"10.1016/j.matdes.2025.113890","DOIUrl":null,"url":null,"abstract":"<div><div>Oral diseases associated with dental biofilms have become one of the frontiers in clinical research due to their complexity. Dental caries is a typical biofilm driven disease resulting from the diet and microbiota-matrix interactions, and it remains a substantial clinical challenge to halt the progression of caries and simultaneously repair the damaged enamel. In this regard, an oral microenvironment-responsive strategy was put forward to develop a multi-enzyme cascade nanosystem possessing antibacterial and <em>in situ</em> mineralization properties. During application in the oral cavity, starch was hydrolyzed by α-amylase, thereby releasing calcium phosphate prenucleation clusters (CaP-PNCs) for <em>in situ</em> remineralization of demineralized enamel, and providing the hydrolysis product glucose. Subsequently, glucose oxidase (GOD) conjugated to dextran-coated iron oxide nanozyme (Dex-IONP-GOD, DIG) catalyzed the production of H<sub>2</sub>O<sub>2</sub> from glucose. Under the acidic caries microenvironment, IONP with POD-like activity can trigger H<sub>2</sub>O<sub>2</sub> to generate reactive oxygen species. This process exhibited bactericidal activities and effectively inhibited the adhesion and biofilm formation of <em>Streptococcus mutans</em>. This bifunctional multi-enzyme cascade nanosystem accomplishes the adaptive initiation of pathogen elimination and <em>in situ</em> mineralization by its environmental responsiveness, rather than relying on the exogenous substrates, which thus provides a potential strategy for preventing and treating dental caries.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"253 ","pages":"Article 113890"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525003107","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oral diseases associated with dental biofilms have become one of the frontiers in clinical research due to their complexity. Dental caries is a typical biofilm driven disease resulting from the diet and microbiota-matrix interactions, and it remains a substantial clinical challenge to halt the progression of caries and simultaneously repair the damaged enamel. In this regard, an oral microenvironment-responsive strategy was put forward to develop a multi-enzyme cascade nanosystem possessing antibacterial and in situ mineralization properties. During application in the oral cavity, starch was hydrolyzed by α-amylase, thereby releasing calcium phosphate prenucleation clusters (CaP-PNCs) for in situ remineralization of demineralized enamel, and providing the hydrolysis product glucose. Subsequently, glucose oxidase (GOD) conjugated to dextran-coated iron oxide nanozyme (Dex-IONP-GOD, DIG) catalyzed the production of H2O2 from glucose. Under the acidic caries microenvironment, IONP with POD-like activity can trigger H2O2 to generate reactive oxygen species. This process exhibited bactericidal activities and effectively inhibited the adhesion and biofilm formation of Streptococcus mutans. This bifunctional multi-enzyme cascade nanosystem accomplishes the adaptive initiation of pathogen elimination and in situ mineralization by its environmental responsiveness, rather than relying on the exogenous substrates, which thus provides a potential strategy for preventing and treating dental caries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信