Low velocity impact response of carbon fiber reinforced thermoplastic composite honeycomb sandwich structure considering mesoscopic damage behavior

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Yong-Zhang Huo , Jin-Shui Yang , Zhao Suo , Tian Zhao , Wei-Jing Wang , Yao-Hui Tong , Xiang-Wei Wang
{"title":"Low velocity impact response of carbon fiber reinforced thermoplastic composite honeycomb sandwich structure considering mesoscopic damage behavior","authors":"Yong-Zhang Huo ,&nbsp;Jin-Shui Yang ,&nbsp;Zhao Suo ,&nbsp;Tian Zhao ,&nbsp;Wei-Jing Wang ,&nbsp;Yao-Hui Tong ,&nbsp;Xiang-Wei Wang","doi":"10.1016/j.compositesa.2025.108898","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of carbon fiber reinforced thermoplastic polymer (CFRTP), laminates and core structures made of them are more and more widely used in various field. This paper focuses on analyzing the dynamic response of laminates and sandwich structures made of T700 carbon fiber reinforced Poly Ether-Ether-Ketone (PEEK) thermoplastic composites under a low-velocity impact condition. The honeycomb sandwich structures and laminates were fabricated separately and were subjected to impact loading with different energies. Finite element models were established to explore the failure mechanisms and energy absorption characteristic of the as-manufactured structures. A high-fidelity mesoscopic modelling method was adopted to gain an in-depth insight of the damage behavior of thermoplastic composites. The effects of structural parameters such as panel thickness, core height and core wall thickness on the impact response were systematically studied. Meanwhile, in comparison with thermoset composites, thermoplastic composites showed better impact resistance.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"194 ","pages":"Article 108898"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001927","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of carbon fiber reinforced thermoplastic polymer (CFRTP), laminates and core structures made of them are more and more widely used in various field. This paper focuses on analyzing the dynamic response of laminates and sandwich structures made of T700 carbon fiber reinforced Poly Ether-Ether-Ketone (PEEK) thermoplastic composites under a low-velocity impact condition. The honeycomb sandwich structures and laminates were fabricated separately and were subjected to impact loading with different energies. Finite element models were established to explore the failure mechanisms and energy absorption characteristic of the as-manufactured structures. A high-fidelity mesoscopic modelling method was adopted to gain an in-depth insight of the damage behavior of thermoplastic composites. The effects of structural parameters such as panel thickness, core height and core wall thickness on the impact response were systematically studied. Meanwhile, in comparison with thermoset composites, thermoplastic composites showed better impact resistance.
随着碳纤维增强热塑性聚合物(CFRTP)的发展,其制成的层压板和夹芯结构越来越广泛地应用于各个领域。本文重点分析了 T700 碳纤维增强聚醚醚酮(PEEK)热塑性复合材料制成的层压板和夹层结构在低速冲击条件下的动态响应。蜂窝夹层结构和层压板分别制造,并承受不同能量的冲击载荷。建立了有限元模型,以探索成品结构的失效机制和能量吸收特性。采用高保真介观建模方法深入了解热塑性复合材料的损伤行为。系统研究了面板厚度、芯材高度和芯材壁厚等结构参数对冲击响应的影响。同时,与热固性复合材料相比,热塑性复合材料具有更好的抗冲击性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信