Kota Onuki , Naoki Matsui , Kota Suzuki , Masaaki Hirayama , Ryoji Kanno
{"title":"Fluoride-ion conductivity of scheelite-type LiYb1-xMxF4±x (M = Mg, Ca, Sr, Hf)","authors":"Kota Onuki , Naoki Matsui , Kota Suzuki , Masaaki Hirayama , Ryoji Kanno","doi":"10.1016/j.ssi.2025.116851","DOIUrl":null,"url":null,"abstract":"<div><div>Fluorite-type fluoride-ion conductors have been widely studied, whereas fluorite-derivative structures remain untapped material spaces as fluoride-ion conductors. In this study, fluoride-ion conductivities in scheelite-type LiYb<sub>1-<em>x</em></sub><em>M</em><sub><em>x</em></sub>F<sub>4±<em>x</em></sub> (<em>M</em> = Mg, Ca, Sr, and Hf) solid solutions were investigated. Introduction of fluorine-vacancy through aliovalent cation-substitution significantly enhanced ionic conductivity, with 15 % Ca<sup>2+</sup> substitution for Yb<sup>3+</sup> exhibiting a maximum conductivity of 1.7 × 10<sup>−5</sup> S cm<sup>−1</sup> at 473 K. Structural analysis confirmed the formation of F vacancies, whereas bond valence energy landscape calculations revealed low-barrier conduction pathways. Furthermore, molecular dynamics simulations revealed distinct fluoride migration pathway near the Ca<sup>2+</sup>-doped and undoped regions. These findings offer new insights into the fluoride-ion conduction mechanisms in fluorite-related structures.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"424 ","pages":"Article 116851"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000700","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorite-type fluoride-ion conductors have been widely studied, whereas fluorite-derivative structures remain untapped material spaces as fluoride-ion conductors. In this study, fluoride-ion conductivities in scheelite-type LiYb1-xMxF4±x (M = Mg, Ca, Sr, and Hf) solid solutions were investigated. Introduction of fluorine-vacancy through aliovalent cation-substitution significantly enhanced ionic conductivity, with 15 % Ca2+ substitution for Yb3+ exhibiting a maximum conductivity of 1.7 × 10−5 S cm−1 at 473 K. Structural analysis confirmed the formation of F vacancies, whereas bond valence energy landscape calculations revealed low-barrier conduction pathways. Furthermore, molecular dynamics simulations revealed distinct fluoride migration pathway near the Ca2+-doped and undoped regions. These findings offer new insights into the fluoride-ion conduction mechanisms in fluorite-related structures.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.