Precisely manipulating polymer chain interactions for multifunctional hydrogels

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-04-02 DOI:10.1016/j.matt.2024.06.024
Shuai Guo , Songlin Zhang , Haochen Li , Siqi Liu , Junqiang Justin Koh , Mengjuan Zhou , Zhongda Sun , Yuan Liu , Hao Qu , Zhen Yu , Yaoxin Zhang , Lin Yang , Wei Chen , Chaobin He , Chengkuo Lee , Dongsheng Mao , Sai Kishore Ravi , Yuekun Lai , Swee Ching Tan
{"title":"Precisely manipulating polymer chain interactions for multifunctional hydrogels","authors":"Shuai Guo ,&nbsp;Songlin Zhang ,&nbsp;Haochen Li ,&nbsp;Siqi Liu ,&nbsp;Junqiang Justin Koh ,&nbsp;Mengjuan Zhou ,&nbsp;Zhongda Sun ,&nbsp;Yuan Liu ,&nbsp;Hao Qu ,&nbsp;Zhen Yu ,&nbsp;Yaoxin Zhang ,&nbsp;Lin Yang ,&nbsp;Wei Chen ,&nbsp;Chaobin He ,&nbsp;Chengkuo Lee ,&nbsp;Dongsheng Mao ,&nbsp;Sai Kishore Ravi ,&nbsp;Yuekun Lai ,&nbsp;Swee Ching Tan","doi":"10.1016/j.matt.2024.06.024","DOIUrl":null,"url":null,"abstract":"<div><div>Stretchable and conductive hydrogels are essential in wearable electronics but often suffer from poor mechanical strength, large strain hysteresis, or deteriorated stability due to suboptimal polymer chain interactions. Here, we propose a precise inter-/intra-polymer-chain-interaction manipulation approach that endows hydrogels with excellent performance and multifunctionality. Our hydrogels exhibit high softness (∼200 kPa modulus), stretchability (∼180%), and conductivity (∼20 S/m) and excellent rebound resilience (energy loss coefficient &lt;0.15). They also demonstrate excellent water retention and stability at room temperature. As a self-powered tactile sensor, these hydrogels can detect large strains at high frequencies (up to 50 Hz) and tiny stimuli (∼0.2% strain or 5 Pa pressure) with fast response time (42 ms). The key success lies in unique hydrogen bond networks and polymer chain entanglements achieved through plasticizer softening, freezing-thawing, and salt-soaking processes. This approach provides a fundamental solution and valuable insights for preparing intrinsically stretchable and conductive hydrogels for versatile applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 4","pages":"Article 101785"},"PeriodicalIF":17.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524003436","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stretchable and conductive hydrogels are essential in wearable electronics but often suffer from poor mechanical strength, large strain hysteresis, or deteriorated stability due to suboptimal polymer chain interactions. Here, we propose a precise inter-/intra-polymer-chain-interaction manipulation approach that endows hydrogels with excellent performance and multifunctionality. Our hydrogels exhibit high softness (∼200 kPa modulus), stretchability (∼180%), and conductivity (∼20 S/m) and excellent rebound resilience (energy loss coefficient <0.15). They also demonstrate excellent water retention and stability at room temperature. As a self-powered tactile sensor, these hydrogels can detect large strains at high frequencies (up to 50 Hz) and tiny stimuli (∼0.2% strain or 5 Pa pressure) with fast response time (42 ms). The key success lies in unique hydrogen bond networks and polymer chain entanglements achieved through plasticizer softening, freezing-thawing, and salt-soaking processes. This approach provides a fundamental solution and valuable insights for preparing intrinsically stretchable and conductive hydrogels for versatile applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信