Yehao Huang , Jia Yao , Bowen Yu , Longyu Zhang , Xiangyu Song , Weijun Peng
{"title":"Enhancing separation of chalcopyrite and molybdenite via ozone micro-nano bubble oxidation and flotation","authors":"Yehao Huang , Jia Yao , Bowen Yu , Longyu Zhang , Xiangyu Song , Weijun Peng","doi":"10.1016/j.psep.2025.107064","DOIUrl":null,"url":null,"abstract":"<div><div>Chalcopyrite and molybdenite present challenges in flotation separation due to their similar floatability. In this study, ozone micro-nano bubble was employed to oxidize chalcopyrite and molybdenite, altering their surface properties to facilitate them separation via flotation. The flotation results demonstrated a significant reduction in the recovery of chalcopyrite through ozone micro-nano bubble oxidation, while molybdenite remained unaffected. The concentrates with the Mo recovery remained steady at 84 % and Cu recovery below 9 % were achieved in flotation experiments of the artificially mixed ores with various mass ratios of chalcopyrite and molybdenite. Analysis of the results from X-ray photoelectron spectroscopy (XPS), zeta potential, and contact angle measurements indicated that the surface of chalcopyrite was oxidized to form metal oxides and hydroxides after ozone micro-nano bubble oxidation, thereby decreasing its floatability. In contrast, the oxidation products of molybdenite dissolved in the pulp, preserving its original surface and floatability. Additionally, experimental results confirmed that micro-nano bubbles exhibited superior oxidation effectiveness and rate than those of conventional bubbles. In summary, ozone micro-nano bubble oxidation presented a promising green alternative to traditional depressants for the efficient separation of copper and molybdenum sulfide ore.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"197 ","pages":"Article 107064"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582025003313","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chalcopyrite and molybdenite present challenges in flotation separation due to their similar floatability. In this study, ozone micro-nano bubble was employed to oxidize chalcopyrite and molybdenite, altering their surface properties to facilitate them separation via flotation. The flotation results demonstrated a significant reduction in the recovery of chalcopyrite through ozone micro-nano bubble oxidation, while molybdenite remained unaffected. The concentrates with the Mo recovery remained steady at 84 % and Cu recovery below 9 % were achieved in flotation experiments of the artificially mixed ores with various mass ratios of chalcopyrite and molybdenite. Analysis of the results from X-ray photoelectron spectroscopy (XPS), zeta potential, and contact angle measurements indicated that the surface of chalcopyrite was oxidized to form metal oxides and hydroxides after ozone micro-nano bubble oxidation, thereby decreasing its floatability. In contrast, the oxidation products of molybdenite dissolved in the pulp, preserving its original surface and floatability. Additionally, experimental results confirmed that micro-nano bubbles exhibited superior oxidation effectiveness and rate than those of conventional bubbles. In summary, ozone micro-nano bubble oxidation presented a promising green alternative to traditional depressants for the efficient separation of copper and molybdenum sulfide ore.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.