Facilitating the shift to more collaborative microgrids by alleviating demand volatility using a precontracted order updates strategy

Hanaa Feleafel, Jovana Radulovic, Michel Leseure
{"title":"Facilitating the shift to more collaborative microgrids by alleviating demand volatility using a precontracted order updates strategy","authors":"Hanaa Feleafel,&nbsp;Jovana Radulovic,&nbsp;Michel Leseure","doi":"10.1016/j.nxener.2025.100269","DOIUrl":null,"url":null,"abstract":"<div><div>Microgrids (MGs) have emerged as viable alternatives for delivering electricity to remote rural regions in a secure and ecologically sustainable manner. However, utilizing microgrids in a more collaborative manner might greatly enhance the integration of renewable energy sources into the electricity network. The primary objective of this research is to improve the quality of information communicated from MGs to the utility grid to achieve production levelling. Multiple simulation scenarios have been developed to analyse the performance of a grid-connected MG when the grid order update rules are altered. The findings indicate that the suggested scenarios for collaborative MGs, especially the scenario that relies on forecasted demand for precontracted order updates (COU), are enhancing system performance by stabilizing order volatility to the grid (58% less unplanned volatility of orders in the collaborative MG), thereby reducing the carbon footprint of the MG by 67% and increasing storage utilization by 74%. The only limitation was the volume of exported electricity; however, the implementation of long- term storage capacity (seasonal storage) has effectively reduced the exported power to 0. A distinct trade-off exists between enhanced storage capacity at a higher cost and a significant volume of exported power. The optimal resolution for this trade-off is greatly affected by the initial investment in storage technology and the feed-in tariff rate for exported power. The main conclusion may be summarized as the transition towards more collaborative MGs may serve as the foundation for developing more decentralized electrical networks and integrating more renewable energy sources into the current electricity system.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100269"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microgrids (MGs) have emerged as viable alternatives for delivering electricity to remote rural regions in a secure and ecologically sustainable manner. However, utilizing microgrids in a more collaborative manner might greatly enhance the integration of renewable energy sources into the electricity network. The primary objective of this research is to improve the quality of information communicated from MGs to the utility grid to achieve production levelling. Multiple simulation scenarios have been developed to analyse the performance of a grid-connected MG when the grid order update rules are altered. The findings indicate that the suggested scenarios for collaborative MGs, especially the scenario that relies on forecasted demand for precontracted order updates (COU), are enhancing system performance by stabilizing order volatility to the grid (58% less unplanned volatility of orders in the collaborative MG), thereby reducing the carbon footprint of the MG by 67% and increasing storage utilization by 74%. The only limitation was the volume of exported electricity; however, the implementation of long- term storage capacity (seasonal storage) has effectively reduced the exported power to 0. A distinct trade-off exists between enhanced storage capacity at a higher cost and a significant volume of exported power. The optimal resolution for this trade-off is greatly affected by the initial investment in storage technology and the feed-in tariff rate for exported power. The main conclusion may be summarized as the transition towards more collaborative MGs may serve as the foundation for developing more decentralized electrical networks and integrating more renewable energy sources into the current electricity system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信