Computer vision and tactile glove: A multimodal model in lifting task risk assessment

IF 3.1 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Haozhi Chen , Peiran Liu , Guoyang Zhou , Ming-Lun Lu , Denny Yu
{"title":"Computer vision and tactile glove: A multimodal model in lifting task risk assessment","authors":"Haozhi Chen ,&nbsp;Peiran Liu ,&nbsp;Guoyang Zhou ,&nbsp;Ming-Lun Lu ,&nbsp;Denny Yu","doi":"10.1016/j.apergo.2025.104513","DOIUrl":null,"url":null,"abstract":"<div><div>Work-related injuries from overexertion, particularly lifting, are a major concern in occupational safety. Traditional assessment tools, such as the Revised NIOSH Lifting Equation (RNLE), require significant training and practice for deployment. This study presents an approach that integrates tactile gloves with computer vision (CV) to enhance the assessment of lifting-related injury risks, addressing the limitations of existing single-modality methods. Thirty-one participants performed 2747 lifting tasks across three lifting risk categories (LI &lt; 1, 1 ≤ LI ≤ 2, LI &gt; 2). Features including hand pressure measured by tactile gloves during each lift and 3D body poses estimated using CV algorithms from video recordings were combined and used to develop prediction models. The Convolutional Neural Network (CNN) model achieved an overall accuracy of 89 % in predicting the three lifting risk categories. The results highlight the potential for a real-time, non-intrusive risk assessment tool to assist ergonomic practitioners in mitigating musculoskeletal injury risks in workplace environments.</div></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"127 ","pages":"Article 104513"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687025000493","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Work-related injuries from overexertion, particularly lifting, are a major concern in occupational safety. Traditional assessment tools, such as the Revised NIOSH Lifting Equation (RNLE), require significant training and practice for deployment. This study presents an approach that integrates tactile gloves with computer vision (CV) to enhance the assessment of lifting-related injury risks, addressing the limitations of existing single-modality methods. Thirty-one participants performed 2747 lifting tasks across three lifting risk categories (LI < 1, 1 ≤ LI ≤ 2, LI > 2). Features including hand pressure measured by tactile gloves during each lift and 3D body poses estimated using CV algorithms from video recordings were combined and used to develop prediction models. The Convolutional Neural Network (CNN) model achieved an overall accuracy of 89 % in predicting the three lifting risk categories. The results highlight the potential for a real-time, non-intrusive risk assessment tool to assist ergonomic practitioners in mitigating musculoskeletal injury risks in workplace environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ergonomics
Applied Ergonomics 工程技术-工程:工业
CiteScore
7.50
自引率
9.40%
发文量
248
审稿时长
53 days
期刊介绍: Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信