Performance evaluation of helical tangential porous tube-in-tube microchannel mixer: Effect of cross-sectional area ratio and volumetric flow rate ratio
{"title":"Performance evaluation of helical tangential porous tube-in-tube microchannel mixer: Effect of cross-sectional area ratio and volumetric flow rate ratio","authors":"Xiao Xu , Jinfeng Zhang , Jia Chen , Dongbo Zhao , Shaodong Qin","doi":"10.1016/j.cep.2025.110296","DOIUrl":null,"url":null,"abstract":"<div><div>The tube-in-tube microchannel mixer (TMM) is a passive micromixer primarily applied in chemical engineering and pharmaceutical fields. This study investigates the performance optimization of a helical tangential porous tube-in-tube microchannel mixer (HTP-TMM) using computational fluid dynamics (CFD) simulations. A critical structural parameter, the cross-sectional area ratio (<em>R</em><sub>a</sub>), defined as the ratio of the annular microchannel cross-sectional area to the total micropore cross-sectional area, was introduced. The effects of various <em>R</em><sub>a</sub> and volumetric flow rate ratios (<em>R</em><sub>f</sub>) on mixing efficiency, turbulent kinetic energy, pressure drop, and mixing energy cost were evaluated across flow rates ranging from 10 to 300 mL/min. Results indicate that <em>R</em><sub>a</sub> = 1.5 demonstrates higher mixing efficiency and turbulent kinetic energy at low flow rates. Decreasing <em>R</em><sub>f</sub> improves mixing efficiency and turbulent kinetic energy, with optimal mixing performance occurring at <em>R</em><sub>f</sub> = 1. Additionally, larger <em>R</em><sub>a</sub> and smaller <em>R</em><sub>f</sub> values induce higher pressure drops, with maximum recorded values of 23,449 Pa for <em>R</em><sub>a</sub> = 2 and 19,990 Pa for <em>R</em><sub>f</sub> = 1, both within acceptable ranges for practical applications. Moreover, varying <em>R</em><sub>a</sub> minimally affects mixing energy cost, while increasing <em>R</em><sub>f</sub> raises mixing energy cost. These findings provide valuable guidance for TMM design and application in chemical engineering.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"213 ","pages":"Article 110296"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025527012500145X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The tube-in-tube microchannel mixer (TMM) is a passive micromixer primarily applied in chemical engineering and pharmaceutical fields. This study investigates the performance optimization of a helical tangential porous tube-in-tube microchannel mixer (HTP-TMM) using computational fluid dynamics (CFD) simulations. A critical structural parameter, the cross-sectional area ratio (Ra), defined as the ratio of the annular microchannel cross-sectional area to the total micropore cross-sectional area, was introduced. The effects of various Ra and volumetric flow rate ratios (Rf) on mixing efficiency, turbulent kinetic energy, pressure drop, and mixing energy cost were evaluated across flow rates ranging from 10 to 300 mL/min. Results indicate that Ra = 1.5 demonstrates higher mixing efficiency and turbulent kinetic energy at low flow rates. Decreasing Rf improves mixing efficiency and turbulent kinetic energy, with optimal mixing performance occurring at Rf = 1. Additionally, larger Ra and smaller Rf values induce higher pressure drops, with maximum recorded values of 23,449 Pa for Ra = 2 and 19,990 Pa for Rf = 1, both within acceptable ranges for practical applications. Moreover, varying Ra minimally affects mixing energy cost, while increasing Rf raises mixing energy cost. These findings provide valuable guidance for TMM design and application in chemical engineering.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.