Sulfonic acid-functionalized covalent organic framework@Ti3C2Tx as efficient solid-phase microextraction blade coating for the extraction of monoamine neurotransmitters in rat serum samples

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Cheng Yang , Nian Yang , Di Zhao , Zhiyu Zhang , Junying Song , Zhenqiang Zhang , Kai Hu , Shusheng Zhang
{"title":"Sulfonic acid-functionalized covalent organic framework@Ti3C2Tx as efficient solid-phase microextraction blade coating for the extraction of monoamine neurotransmitters in rat serum samples","authors":"Cheng Yang ,&nbsp;Nian Yang ,&nbsp;Di Zhao ,&nbsp;Zhiyu Zhang ,&nbsp;Junying Song ,&nbsp;Zhenqiang Zhang ,&nbsp;Kai Hu ,&nbsp;Shusheng Zhang","doi":"10.1016/j.chroma.2025.465919","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, a sulfonic-functionalized covalent organic framework@Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em> nanocomposite (SO<sub>3</sub>H<img>COF@Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em>) was synthesized and employed as solid phase microextraction (SPME) coating for isolation and extraction of monoamine neurotransmitters (MNTs) from rat serum samples. The resultant composite can combine the characteristics of hydrophilic Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em> and SO<sub>3</sub>H<img>COF, which endow it has multiple adsorption sites and can provide multiple interactions such as cation exchange, hydrogen bonding and π-π with the target MNTs. The synthesized SO<sub>3</sub>H<img>COF@Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em> SPME blades have excellent protein exclusion capability, ensuring high adsorption efficiency for MNTs. Under the optimized conditions, the proposed SO<sub>3</sub>H<img>COF@Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em> blades-based SPME-HPLC method exhibited good linearities (<em>r</em><sup>2</sup>≥0.9963), low limits of detection (0.015–0.030 ng mL<sup>-1</sup>) and low matrix effect (0.83 %-17.36 %). The recoveries of MNTs in the rat serum were in range of 90.3 %-118.3 %, with RSDs &lt;10.8 %. The SPME-HPLC method was successfully applied for the analysis of 4 MNTs in the serum of depression model rats. This work not only details the development of a multi-functional composite, but it also presents an effective strategy for the determination of trace MNTs in serum sample.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1750 ","pages":"Article 465919"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325002675","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a sulfonic-functionalized covalent organic framework@Ti3C2Tx nanocomposite (SO3HCOF@Ti3C2Tx) was synthesized and employed as solid phase microextraction (SPME) coating for isolation and extraction of monoamine neurotransmitters (MNTs) from rat serum samples. The resultant composite can combine the characteristics of hydrophilic Ti3C2Tx and SO3HCOF, which endow it has multiple adsorption sites and can provide multiple interactions such as cation exchange, hydrogen bonding and π-π with the target MNTs. The synthesized SO3HCOF@Ti3C2Tx SPME blades have excellent protein exclusion capability, ensuring high adsorption efficiency for MNTs. Under the optimized conditions, the proposed SO3HCOF@Ti3C2Tx blades-based SPME-HPLC method exhibited good linearities (r2≥0.9963), low limits of detection (0.015–0.030 ng mL-1) and low matrix effect (0.83 %-17.36 %). The recoveries of MNTs in the rat serum were in range of 90.3 %-118.3 %, with RSDs <10.8 %. The SPME-HPLC method was successfully applied for the analysis of 4 MNTs in the serum of depression model rats. This work not only details the development of a multi-functional composite, but it also presents an effective strategy for the determination of trace MNTs in serum sample.
磺酸功能化共价有机framework@Ti3C2Tx作为高效固相微萃取叶片涂层提取大鼠血清中单胺类神经递质
本文合成了一种磺化共价有机framework@Ti3C2Tx纳米复合材料(SO3HCOF@Ti3C2Tx),并将其用作固相微萃取(SPME)涂层,用于分离和提取大鼠血清样品中的单胺类神经递质(MNTs)。该复合材料结合了Ti3C2Tx和SO3HCOF亲水性的特点,具有多个吸附位点,并能与目标MNTs进行阳离子交换、氢键和π-π等多种相互作用。合成的SO3HCOF@Ti3C2Tx SPME叶片具有优异的蛋白质排除能力,保证了MNTs的高吸附效率。在优化条件下,SO3HCOF@Ti3C2Tx叶片型SPME-HPLC法线性良好(r2≥0.9963),检出限低(0.015 ~ 0.030 ng mL-1),基质效应低(0.83% ~ 17.36%)。mnt在大鼠血清中的加样回收率为90.3% ~ 118.3%,rsd为10.8%。采用SPME-HPLC法对抑郁症模型大鼠血清中4种mnt进行了分析。这项工作不仅详细介绍了多功能复合材料的开发,而且还提出了一种测定血清样品中痕量mnt的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信