Evaluation of phase change material-impregnated waste tire-derived carbon in cement-expanded vermiculite-based composites for solar thermoregulation of buildings

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Togay Ozbakkaloglu , Aamar Danish , Abid Ustaoğlu , Ahmet Sarı , Ertuğrul Erdoğmuş , Gökhan Hekimoğlu , Şermin Koçyiğit , Osman Gencel
{"title":"Evaluation of phase change material-impregnated waste tire-derived carbon in cement-expanded vermiculite-based composites for solar thermoregulation of buildings","authors":"Togay Ozbakkaloglu ,&nbsp;Aamar Danish ,&nbsp;Abid Ustaoğlu ,&nbsp;Ahmet Sarı ,&nbsp;Ertuğrul Erdoğmuş ,&nbsp;Gökhan Hekimoğlu ,&nbsp;Şermin Koçyiğit ,&nbsp;Osman Gencel","doi":"10.1016/j.susmat.2025.e01363","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative phase change material (PCM) impregnated waste tire-derived carbon (WTC), based on the dire need for enhanced energy efficiency and building temperature management. Thermal energy storage materials were produced by combining capric acid (CA) and palmitic acid (PA) eutectic mixture (CA-PA) with WTC in cement-expanded vermiculite-based composites (CEVCs). The study comprehensively evaluates the impact of PCM-impregnated WTC on the thermoregulation performance of CEVCs in specially prepared test cabins under real weather conditions. Moreover, the material's physio-mechanical properties, thermal conductivity, thermal stability, and thermal behavior were also investigated, validating its ability to absorb and discharge latent heat. The results revealed that WTC/CA-PA experienced latent heat values of 85.2 J/g and 85.8 J/g during solidification and melting, respectively. Furthermore, it was observed that composites containing 10–40 % PCM-impregnated WTC exhibited 12.7–43.7 % and 25.5–160.8 % higher dry unit weight and compressive strength than the reference specimen. The solar thermoregulation experiments at real weather conditions revealed that CEVC containing PCM-impregnated WTC produced a maximum difference of 5.3 °C and 3.53 °C in temperature between the upper surfaces and near surfaces of the test and reference chambers. The promising results symbolize a significant shift toward fostering sustainable construction practices, encompassing occupant comfort and energy efficiency for a sustainable built environment while addressing the critical issue of waste tire recycling.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"44 ","pages":"Article e01363"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725001319","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative phase change material (PCM) impregnated waste tire-derived carbon (WTC), based on the dire need for enhanced energy efficiency and building temperature management. Thermal energy storage materials were produced by combining capric acid (CA) and palmitic acid (PA) eutectic mixture (CA-PA) with WTC in cement-expanded vermiculite-based composites (CEVCs). The study comprehensively evaluates the impact of PCM-impregnated WTC on the thermoregulation performance of CEVCs in specially prepared test cabins under real weather conditions. Moreover, the material's physio-mechanical properties, thermal conductivity, thermal stability, and thermal behavior were also investigated, validating its ability to absorb and discharge latent heat. The results revealed that WTC/CA-PA experienced latent heat values of 85.2 J/g and 85.8 J/g during solidification and melting, respectively. Furthermore, it was observed that composites containing 10–40 % PCM-impregnated WTC exhibited 12.7–43.7 % and 25.5–160.8 % higher dry unit weight and compressive strength than the reference specimen. The solar thermoregulation experiments at real weather conditions revealed that CEVC containing PCM-impregnated WTC produced a maximum difference of 5.3 °C and 3.53 °C in temperature between the upper surfaces and near surfaces of the test and reference chambers. The promising results symbolize a significant shift toward fostering sustainable construction practices, encompassing occupant comfort and energy efficiency for a sustainable built environment while addressing the critical issue of waste tire recycling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信