Mohammad Shaaban , Sami El-Borgi , Aravind Krishnamoorthy
{"title":"Bandgap formation and tuning in gyroid lattice structures: Simulations and experiments","authors":"Mohammad Shaaban , Sami El-Borgi , Aravind Krishnamoorthy","doi":"10.1016/j.matdes.2025.113896","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a comprehensive investigation of the mechanical bandgap characteristics of gyroid lattice structures. Two methods are used to predict the bandgaps. The first examines wave dispersion in a single unit cell to identify bandgaps through dispersion curves. The second employs harmonic analysis on a finite structure to calculate its steady-state response and plot the frequency response function (FRF). To validate the numerical predictions, PLA matrix and network gyroids samples are manufactured using Fused Deposition Modeling (FDM) and tested for vibration attenuation. The network gyroid demonstrated superior bandgap performance compared to the matrix gyroid, with the broadest bandgap spanning between 6.61 kHz and 7.74 kHz. Parametric studies revealed that the wall thickness, unit cell size, and material properties significantly influence the location and bandwidth of bandgaps, enabling their precise tuning. These findings highlight the potential of the network gyroid structures for vibration-sensitive engineering applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"253 ","pages":"Article 113896"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525003168","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides a comprehensive investigation of the mechanical bandgap characteristics of gyroid lattice structures. Two methods are used to predict the bandgaps. The first examines wave dispersion in a single unit cell to identify bandgaps through dispersion curves. The second employs harmonic analysis on a finite structure to calculate its steady-state response and plot the frequency response function (FRF). To validate the numerical predictions, PLA matrix and network gyroids samples are manufactured using Fused Deposition Modeling (FDM) and tested for vibration attenuation. The network gyroid demonstrated superior bandgap performance compared to the matrix gyroid, with the broadest bandgap spanning between 6.61 kHz and 7.74 kHz. Parametric studies revealed that the wall thickness, unit cell size, and material properties significantly influence the location and bandwidth of bandgaps, enabling their precise tuning. These findings highlight the potential of the network gyroid structures for vibration-sensitive engineering applications.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.