Kedi Yang , Yuxin Tian , Xiaoliang Wang , Qingquan Liu
{"title":"Numerical study of granular flow impacting hemi-spherical structures on steep terrains by a two-phase model with μ(I) rheology closure","authors":"Kedi Yang , Yuxin Tian , Xiaoliang Wang , Qingquan Liu","doi":"10.1016/j.partic.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>Granular flow is prevalent in natural disasters such as landslides and avalanches. Investigating the impact characteristics and load variations of granular flows on structures is vital for disaster prevention and mitigation. This study employs a three-dimensional continuum model combined with the Volume of Fluid method, treating the particle phase as a non-Newtonian fluid based on the <em>μ</em>(<em>I</em>) constitutive model. A numerical solver for non-Newtonian two-phase flow capable of describing granular flows on complex terrains has been implemented. Through simulations of a typical laboratory-scale three-dimensional granular column collapse problem, we present spreading processes and deposition distributions which agree with the experimental results, thereby validating the effectiveness of our numerical approach. Using this model, we examine the dynamic interactions between granular flows and single hemispherical obstacles on steep terrains. The predictions regarding depth-time curves at several critical probes and final deposition profiles demonstrate superior accuracy compared to previous forecasts based on depth-averaged models. Additionally, an analysis of the evolution of impact forces exerted by granular flows on obstacles reveals that shoulder obstacles can significantly mitigate impact forces within primary flow regions. We also give the plugging characteristics of the granular flow near the front of the obstacles. In contrast to traditional depth integration models, our methodology offers enhanced insights into three-dimensional flow dynamics and loading characteristics, providing valuable references for disaster prediction and assessment in practical engineering.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"100 ","pages":"Pages 116-127"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125000768","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Granular flow is prevalent in natural disasters such as landslides and avalanches. Investigating the impact characteristics and load variations of granular flows on structures is vital for disaster prevention and mitigation. This study employs a three-dimensional continuum model combined with the Volume of Fluid method, treating the particle phase as a non-Newtonian fluid based on the μ(I) constitutive model. A numerical solver for non-Newtonian two-phase flow capable of describing granular flows on complex terrains has been implemented. Through simulations of a typical laboratory-scale three-dimensional granular column collapse problem, we present spreading processes and deposition distributions which agree with the experimental results, thereby validating the effectiveness of our numerical approach. Using this model, we examine the dynamic interactions between granular flows and single hemispherical obstacles on steep terrains. The predictions regarding depth-time curves at several critical probes and final deposition profiles demonstrate superior accuracy compared to previous forecasts based on depth-averaged models. Additionally, an analysis of the evolution of impact forces exerted by granular flows on obstacles reveals that shoulder obstacles can significantly mitigate impact forces within primary flow regions. We also give the plugging characteristics of the granular flow near the front of the obstacles. In contrast to traditional depth integration models, our methodology offers enhanced insights into three-dimensional flow dynamics and loading characteristics, providing valuable references for disaster prediction and assessment in practical engineering.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.