Ping Li , Shuiai Luo , Liang Fu , Dan Sun , Song Lan , Shuchun Li
{"title":"Analysis of impurities in NaPF6 for sodium-ion batteries by inductively coupled plasma tandem mass spectrometry","authors":"Ping Li , Shuiai Luo , Liang Fu , Dan Sun , Song Lan , Shuchun Li","doi":"10.1016/j.sab.2025.107199","DOIUrl":null,"url":null,"abstract":"<div><div>To detect metal impurities in the electrolyte of sodium-ion batteries (sodium hexafluorophosphate, NaPF<sub>6</sub>) and ensure the performance stability and safety of sodium-ion batteries, a new strategy for identifying detrimental metal impurities is proposed. In this work, inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) was used to study 12 metal impurities in NaPF<sub>6</sub>. The NaPF<sub>6</sub> sample was dissolved in ultra-pure water and directly analyzed by ICP-MS/MS, and the spectral interference was eliminated by the reaction gas mixture N<sub>2</sub>O/H<sub>2</sub> in the MS/MS mode. The analysis results were compared with the results from sector field (SF)-ICP-MS, and the accuracy and reliability of the developed method were evaluated by a spike recovery test. Under optimized conditions, the limit of detection (LOD) of analytes was in the range of 0.16–3.2 ng L<sup>−1</sup>, the spiked recovery was in the range of 94.4 %–105 %, and the relative standard deviation (RSD) was 1.3 %–4.1 %. Statistical analysis showed that, at the confidence level of 95 %, there was no significant difference between the analysis results from the developed method and SF-ICP-MS. The developed method is accurate and reliable, with good stability and high accuracy. The ICP-MS/MS method based on the N<sub>2</sub>O/H<sub>2</sub> reaction mode shows strong potential for analyzing various metal impurities in NaPF<sub>6</sub>, and can be extended to other fields with great reference value.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"229 ","pages":"Article 107199"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854725000849","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
To detect metal impurities in the electrolyte of sodium-ion batteries (sodium hexafluorophosphate, NaPF6) and ensure the performance stability and safety of sodium-ion batteries, a new strategy for identifying detrimental metal impurities is proposed. In this work, inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) was used to study 12 metal impurities in NaPF6. The NaPF6 sample was dissolved in ultra-pure water and directly analyzed by ICP-MS/MS, and the spectral interference was eliminated by the reaction gas mixture N2O/H2 in the MS/MS mode. The analysis results were compared with the results from sector field (SF)-ICP-MS, and the accuracy and reliability of the developed method were evaluated by a spike recovery test. Under optimized conditions, the limit of detection (LOD) of analytes was in the range of 0.16–3.2 ng L−1, the spiked recovery was in the range of 94.4 %–105 %, and the relative standard deviation (RSD) was 1.3 %–4.1 %. Statistical analysis showed that, at the confidence level of 95 %, there was no significant difference between the analysis results from the developed method and SF-ICP-MS. The developed method is accurate and reliable, with good stability and high accuracy. The ICP-MS/MS method based on the N2O/H2 reaction mode shows strong potential for analyzing various metal impurities in NaPF6, and can be extended to other fields with great reference value.
期刊介绍:
Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields:
Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy;
Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS).
Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF).
Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.