Experimental and numerical investigation of spray cooling based photovoltaic/thermal system: Achieving high performance, low cost, and lightweight design

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Yang Zhao , Feng Wang , Zipeng Xu , Chao Cheng , Dan Gao , Heng Zhang , Yuting Wang
{"title":"Experimental and numerical investigation of spray cooling based photovoltaic/thermal system: Achieving high performance, low cost, and lightweight design","authors":"Yang Zhao ,&nbsp;Feng Wang ,&nbsp;Zipeng Xu ,&nbsp;Chao Cheng ,&nbsp;Dan Gao ,&nbsp;Heng Zhang ,&nbsp;Yuting Wang","doi":"10.1016/j.energy.2025.135671","DOIUrl":null,"url":null,"abstract":"<div><div>In an age where the world faces increasing energy demands and environmental concerns, efficient and sustainable renewable energy solutions are imperative. This study investigates spray cooling as a promising approach to address conventional PV/T limitations in thermal management, reliability, and cost. Experimental and numerical analyses under realistic conditions demonstrate that the spray-cooled PV/T can achieve over 9 % power improvement versus PV, while reducing PV surface temperatures from 35 °C to 23.1 °C even under winter operation. Critically, spray cooling eliminates localized high-stress regions observed in conventional water-cooled PV/T (maximum stress: 106 MPa; deformation: 26 mm), ensuring structural integrity during prolonged operation. Economically, the spray cooling PV/T reduces the levelized cost of electricity (LCOE) compared to conventional PV/T under the different discount rates and O&amp;M costs, with annual savings of 16.04 billion USD (1.5‱ of global GDP) through reduced installed capacity and optimized thermal energy recovery. Environmentally, it achieves reductions in water consumption (1.4‱ of global freshwater usage), land use (0.07‱ of non-arable area), and manufacturing-related greenhouse gas emissions (0.4‱ of global totals). By integrating lightweight design, efficient heat dissipation, and low-cost investigation, this work establishes spray cooling as a scalable pathway to enable widespread adoption of PV/T systems.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"323 ","pages":"Article 135671"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225013131","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In an age where the world faces increasing energy demands and environmental concerns, efficient and sustainable renewable energy solutions are imperative. This study investigates spray cooling as a promising approach to address conventional PV/T limitations in thermal management, reliability, and cost. Experimental and numerical analyses under realistic conditions demonstrate that the spray-cooled PV/T can achieve over 9 % power improvement versus PV, while reducing PV surface temperatures from 35 °C to 23.1 °C even under winter operation. Critically, spray cooling eliminates localized high-stress regions observed in conventional water-cooled PV/T (maximum stress: 106 MPa; deformation: 26 mm), ensuring structural integrity during prolonged operation. Economically, the spray cooling PV/T reduces the levelized cost of electricity (LCOE) compared to conventional PV/T under the different discount rates and O&M costs, with annual savings of 16.04 billion USD (1.5‱ of global GDP) through reduced installed capacity and optimized thermal energy recovery. Environmentally, it achieves reductions in water consumption (1.4‱ of global freshwater usage), land use (0.07‱ of non-arable area), and manufacturing-related greenhouse gas emissions (0.4‱ of global totals). By integrating lightweight design, efficient heat dissipation, and low-cost investigation, this work establishes spray cooling as a scalable pathway to enable widespread adoption of PV/T systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信