{"title":"Convergence analysis of a Nyström-type method for a class of nonlinear integral equations with highly oscillatory kernels","authors":"Qusay Abdulraheem Kassid, Saeed Sohrabi, Hamid Ranjbar","doi":"10.1016/j.amc.2025.129450","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a Nyström-type method for the numerical solution of a class of nonlinear highly oscillatory Volterra integral equations with a trigonometric kernel. The implementation of this method leads to a nonlinear system that involves oscillatory integrals, which is then addressed using a two-point generalized quadrature rule to construct a fully discretized scheme. The error analysis of the method, in terms of both frequency and step length, is also presented. It is demonstrated that the proposed method outperforms the one recently introduced in the literature. To validate the method, several numerical examples are provided, confirming its efficiency and accuracy.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129450"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001778","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a Nyström-type method for the numerical solution of a class of nonlinear highly oscillatory Volterra integral equations with a trigonometric kernel. The implementation of this method leads to a nonlinear system that involves oscillatory integrals, which is then addressed using a two-point generalized quadrature rule to construct a fully discretized scheme. The error analysis of the method, in terms of both frequency and step length, is also presented. It is demonstrated that the proposed method outperforms the one recently introduced in the literature. To validate the method, several numerical examples are provided, confirming its efficiency and accuracy.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.