Engineering cellulosic paper into a bending strain sensor using chemical additives: Metal salt-based treatment and ethanol-assisted processing

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Jianmin Peng , Xin Fu , Xiaoyan Yu , Zhongfei Yuan , Xueren Qian , Yonghao Ni , Zhibin He , Jing Shen
{"title":"Engineering cellulosic paper into a bending strain sensor using chemical additives: Metal salt-based treatment and ethanol-assisted processing","authors":"Jianmin Peng ,&nbsp;Xin Fu ,&nbsp;Xiaoyan Yu ,&nbsp;Zhongfei Yuan ,&nbsp;Xueren Qian ,&nbsp;Yonghao Ni ,&nbsp;Zhibin He ,&nbsp;Jing Shen","doi":"10.1016/j.carbpol.2025.123439","DOIUrl":null,"url":null,"abstract":"<div><div>The pulp and paper industry, traditionally focused on basic material production, is now expanding into innovative areas, such as advanced functional materials. Papermaking wet-end chemistry &amp; chemical additives is a specialized field that integrates process control in wet-end paper production with the versatile use of chemical additives, which can be tailored for both wet-end and non-wet-end applications. By combining the optimization of wet-end processes with the adaptability of chemical additives—designed specifically for papermaking or adapted from other industries—this field offers immense potential for bridging traditional papermaking with emerging technologies. This study introduces a cellulosic paper-based bending strain sensor enabled by two simple chemical additives: metal salt and ethanol. The sensor is fabricated through a treatment process that engineers the fiber network, enhancing its conductive properties. By transforming the paper's porous structure into a denser network, efficient conductive pathways are established. The resulting material demonstrates features like bending strain detection, isotropic sensitivity, low hysteresis, and high-frequency responsiveness. Additionally, it can sense temperature changes between 20–60 °C and remains functional at subzero temperatures. Encapsulation with polyimide further improves its waterproof and environmental stability. The metal salt–ethanol approach offers a scalable, sustainable, and cost-effective method for producing cellulosic sensors and wearable devices, providing a robust foundation for the practical adoption of innovative sensing technologies.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"358 ","pages":"Article 123439"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725002206","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The pulp and paper industry, traditionally focused on basic material production, is now expanding into innovative areas, such as advanced functional materials. Papermaking wet-end chemistry & chemical additives is a specialized field that integrates process control in wet-end paper production with the versatile use of chemical additives, which can be tailored for both wet-end and non-wet-end applications. By combining the optimization of wet-end processes with the adaptability of chemical additives—designed specifically for papermaking or adapted from other industries—this field offers immense potential for bridging traditional papermaking with emerging technologies. This study introduces a cellulosic paper-based bending strain sensor enabled by two simple chemical additives: metal salt and ethanol. The sensor is fabricated through a treatment process that engineers the fiber network, enhancing its conductive properties. By transforming the paper's porous structure into a denser network, efficient conductive pathways are established. The resulting material demonstrates features like bending strain detection, isotropic sensitivity, low hysteresis, and high-frequency responsiveness. Additionally, it can sense temperature changes between 20–60 °C and remains functional at subzero temperatures. Encapsulation with polyimide further improves its waterproof and environmental stability. The metal salt–ethanol approach offers a scalable, sustainable, and cost-effective method for producing cellulosic sensors and wearable devices, providing a robust foundation for the practical adoption of innovative sensing technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信