Polysaccharide-based green flocculants: A systematic and comparative study of their coagulation-flocculation efficiency

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Simon Leonhartsberger , Pierre Carmona , Bernhard Seidl , Karl-Juergen Mann , Martin Kozich , Irina Sulaeva , Christian Stanetty , Marko D. Mihovilovic
{"title":"Polysaccharide-based green flocculants: A systematic and comparative study of their coagulation-flocculation efficiency","authors":"Simon Leonhartsberger ,&nbsp;Pierre Carmona ,&nbsp;Bernhard Seidl ,&nbsp;Karl-Juergen Mann ,&nbsp;Martin Kozich ,&nbsp;Irina Sulaeva ,&nbsp;Christian Stanetty ,&nbsp;Marko D. Mihovilovic","doi":"10.1016/j.carbpol.2025.123527","DOIUrl":null,"url":null,"abstract":"<div><div>Driven by the quest for greener flocculants, this study explores how cationized polysaccharides can enhance coagulation-flocculation efficiency, filling a gap in systematic comparative analyses. We introduce here a flocculation score which provides a robust framework for flocculation evaluation and comparison. Starch, chitosan, inulin, guar gum, pullulan, and hydroxyethyl cellulose were tested, both unmodified and modified with quaternary ammonium compounds. Promising results in coagulation-flocculation were observed compared to synthetic flocculants like cationic polyacrylamide (cPAM) and Poly(Diallyldimethylammonium Chloride) (pDADMAC).</div><div>Advanced techniques such as AsFlFFF-MALS, NMR, PCD, rheology, SEM, image analysis, and zeta potential were used to thoroughly characterize these polysaccharides and their flocculation efficiency. Results revealed notable flocculation enhancement in kaolin suspension (model system) and industrial starch sludge with cationized polysaccharides over their unmodified counterparts. Key influencing factors —molecular weight, charge density, and viscosity— and their trends were identified, with higher charge densities notably enhancing flocculation particularly in kaolin suspensions, and higher molecular weight enhancing flocculation in industrial sludge. Chitosan emerged as the top unmodified polysaccharide, while cationic pullulan and starch were found to lead among modified polysaccharides.</div><div>This study highlights eco-friendly cationized polysaccharides, providing insights for optimizing water treatment and a comparative analysis of six polysaccharides' intrinsic parameters and flocculation efficiency.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"358 ","pages":"Article 123527"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014486172500308X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by the quest for greener flocculants, this study explores how cationized polysaccharides can enhance coagulation-flocculation efficiency, filling a gap in systematic comparative analyses. We introduce here a flocculation score which provides a robust framework for flocculation evaluation and comparison. Starch, chitosan, inulin, guar gum, pullulan, and hydroxyethyl cellulose were tested, both unmodified and modified with quaternary ammonium compounds. Promising results in coagulation-flocculation were observed compared to synthetic flocculants like cationic polyacrylamide (cPAM) and Poly(Diallyldimethylammonium Chloride) (pDADMAC).
Advanced techniques such as AsFlFFF-MALS, NMR, PCD, rheology, SEM, image analysis, and zeta potential were used to thoroughly characterize these polysaccharides and their flocculation efficiency. Results revealed notable flocculation enhancement in kaolin suspension (model system) and industrial starch sludge with cationized polysaccharides over their unmodified counterparts. Key influencing factors —molecular weight, charge density, and viscosity— and their trends were identified, with higher charge densities notably enhancing flocculation particularly in kaolin suspensions, and higher molecular weight enhancing flocculation in industrial sludge. Chitosan emerged as the top unmodified polysaccharide, while cationic pullulan and starch were found to lead among modified polysaccharides.
This study highlights eco-friendly cationized polysaccharides, providing insights for optimizing water treatment and a comparative analysis of six polysaccharides' intrinsic parameters and flocculation efficiency.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信