{"title":"Univariate interpolation for a class of L-splines with adjoint natural end conditions","authors":"Aurelian Bejancu, Mohamed Dekhil","doi":"10.1016/j.amc.2025.129417","DOIUrl":null,"url":null,"abstract":"<div><div>For <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mi>β</mi></math></span>, let <span><math><mi>L</mi><mo>=</mo><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, the Euler operator of the quadratic functional<span><span><span><math><munder><mo>∫</mo><mrow><mi>R</mi></mrow></munder><mrow><mo>{</mo><mo>|</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>|</mo><mi>D</mi><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow><mi>d</mi><mi>t</mi><mo>,</mo></math></span></span></span> where <em>D</em> is the first derivative operator. Given arbitrary values to be interpolated at a finite knot-set, we prove the existence of a unique <em>L</em>-spline interpolant from the natural space of functions <em>f</em>, for which the functional is finite. The natural <em>L</em>-spline interpolant satisfies adjoint differential conditions outside and at the end points of the interval spanned by the knot-set, and it is in fact the unique minimizer of the functional, subject to the interpolation conditions. This extends the approach by Bejancu (2011) for <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo>=</mo><mi>β</mi></math></span>, corresponding to Sobolev spline (or Matérn kernel) interpolation. For <span><math><mn>0</mn><mo>=</mo><mi>α</mi><mo><</mo><mi>β</mi></math></span>, which is the special case of tension splines, our natural <em>L</em>-spline interpolant with adjoint end conditions can be identified as an “<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>s</mi></mrow></msup></math></span>-spline interpolant in <span><math><mi>R</mi></math></span>” (for <span><math><mi>m</mi><mo>=</mo><mi>l</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>s</mi><mo>=</mo><mn>0</mn></math></span>), previously studied by Le Méhauté and Bouhamidi (1992) via reproducing kernel theory. Our <em>L</em>-spline error analysis, confirmed by numerical tests, is improving on previous convergence results for such tension splines.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129417"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001444","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For , let , the Euler operator of the quadratic functional where D is the first derivative operator. Given arbitrary values to be interpolated at a finite knot-set, we prove the existence of a unique L-spline interpolant from the natural space of functions f, for which the functional is finite. The natural L-spline interpolant satisfies adjoint differential conditions outside and at the end points of the interval spanned by the knot-set, and it is in fact the unique minimizer of the functional, subject to the interpolation conditions. This extends the approach by Bejancu (2011) for , corresponding to Sobolev spline (or Matérn kernel) interpolation. For , which is the special case of tension splines, our natural L-spline interpolant with adjoint end conditions can be identified as an “-spline interpolant in ” (for , ), previously studied by Le Méhauté and Bouhamidi (1992) via reproducing kernel theory. Our L-spline error analysis, confirmed by numerical tests, is improving on previous convergence results for such tension splines.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.