Cyclosporine combined with dexamethasone regulates hepatic Abca1 and PPARα expression and lipid metabolism via butyrate derived from the gut microbiota
Yongping Shi , Mi Jiang , Wenzhong Zhu , Ke Chang , Xukai Cheng , Haijun Bao , Zuojie Peng , Yuan Hu , Chao Li , Feifei Fang , Jia Song , Chenxing Jian , Jinhuang Chen , Xiaogang Shu
{"title":"Cyclosporine combined with dexamethasone regulates hepatic Abca1 and PPARα expression and lipid metabolism via butyrate derived from the gut microbiota","authors":"Yongping Shi , Mi Jiang , Wenzhong Zhu , Ke Chang , Xukai Cheng , Haijun Bao , Zuojie Peng , Yuan Hu , Chao Li , Feifei Fang , Jia Song , Chenxing Jian , Jinhuang Chen , Xiaogang Shu","doi":"10.1016/j.biopha.2025.118017","DOIUrl":null,"url":null,"abstract":"<div><div>Immunosuppression often leads to drastic metabolic, hormonal, and physiological disorders. Changes in the gut microbiota are believed to be one of the factors contributing to these disorders, but the association remains uncertain. Clinical studies can be complicated by confounding variables, such as diet and other drivers of heterogeneity in human microbiomes. In this study, we identified pronounced gut microbiome signatures in rhesus macaques (RMs) with immunosuppression-induced lipid metabolism disorders following cyclosporine combined with dexamethasone. Furthermore, we observed similar changes in the gut microbiota of mice with immunosuppression-induced lipid metabolism disorders, which were associated with short-chain fatty acid metabolism. ELISA showed that immunosuppression significantly reduced the levels of butyric acid in both feces and serum of mice. Spearman correlation analysis identified a significant correlation between serum butyric acid levels and gut microbial dysbiosis induced by immunosuppression, particularly in relation to <em>f_Lachnospiraceae</em>, <em>g_unidentified_Ruminococcaceae</em>, and s_<em>Clostridium leptum</em>. Additionally, mice transplanted with gut microbiota from immunosuppressed mice exhibited hepatic lipid metabolism disorders, and RNA sequencing revealed significant downregulation of ABC transporters and PPARα in the liver, which was closely associated with lipid transport and metabolism, particularly Abca1. Moreover, butyric acid supplementation alleviated hepatic lipid metabolism disorders and upregulated the expression of Abca1 and PPARα in mice transplanted with immunosuppression-induced gut microbiota. Thus, we propose that the combination of cyclosporine and dexamethasone regulates the expression of hepatic Abca1 and PPARα by modulating the gut microbiota and its derived butyrate, particularly <em>Lachnospiraceae</em> and <em>Clostridium leptum</em>, further regulating hepatic lipid metabolism.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"186 ","pages":"Article 118017"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225002112","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Immunosuppression often leads to drastic metabolic, hormonal, and physiological disorders. Changes in the gut microbiota are believed to be one of the factors contributing to these disorders, but the association remains uncertain. Clinical studies can be complicated by confounding variables, such as diet and other drivers of heterogeneity in human microbiomes. In this study, we identified pronounced gut microbiome signatures in rhesus macaques (RMs) with immunosuppression-induced lipid metabolism disorders following cyclosporine combined with dexamethasone. Furthermore, we observed similar changes in the gut microbiota of mice with immunosuppression-induced lipid metabolism disorders, which were associated with short-chain fatty acid metabolism. ELISA showed that immunosuppression significantly reduced the levels of butyric acid in both feces and serum of mice. Spearman correlation analysis identified a significant correlation between serum butyric acid levels and gut microbial dysbiosis induced by immunosuppression, particularly in relation to f_Lachnospiraceae, g_unidentified_Ruminococcaceae, and s_Clostridium leptum. Additionally, mice transplanted with gut microbiota from immunosuppressed mice exhibited hepatic lipid metabolism disorders, and RNA sequencing revealed significant downregulation of ABC transporters and PPARα in the liver, which was closely associated with lipid transport and metabolism, particularly Abca1. Moreover, butyric acid supplementation alleviated hepatic lipid metabolism disorders and upregulated the expression of Abca1 and PPARα in mice transplanted with immunosuppression-induced gut microbiota. Thus, we propose that the combination of cyclosporine and dexamethasone regulates the expression of hepatic Abca1 and PPARα by modulating the gut microbiota and its derived butyrate, particularly Lachnospiraceae and Clostridium leptum, further regulating hepatic lipid metabolism.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.