Enhancing the seismic resilience of the Batıayaz masonry bridge, aftermath of 2023 Kahramanmaraş earthquakes, using iron and FRP clamp-dowel connectors in the arch: Failure tests and numerical modelling
{"title":"Enhancing the seismic resilience of the Batıayaz masonry bridge, aftermath of 2023 Kahramanmaraş earthquakes, using iron and FRP clamp-dowel connectors in the arch: Failure tests and numerical modelling","authors":"Murat Cavuslu, Tuna Ülger","doi":"10.1016/j.engfailanal.2025.109544","DOIUrl":null,"url":null,"abstract":"<div><div>Historic bridges are invaluable cultural landmarks that embody the architectural and engineering achievements of past civilizations. Preserving these structures, which are often vulnerable to seismic activity, is essential to safeguarding cultural heritage for future generations. This study examines the Batıayaz Bridge, which sustained significant damage in the February 8, 2023, Kahramanmaraş earthquakes. Originally, iron connectors were used between stones in the arch section of the bridge. This research investigates the potential of using FRP (Fiber Reinforced Polymer) connectors as an alternative to iron for enhancing the seismic resilience of the arch. The bridge was reinforced with both FRP-metal clamps and dowel connectors, enabling a comparison of its seismic performance under each configuration. The connectors were carefully installed between stones with specialized adhesives and Khorasan mortar. Reinforced stone elements then underwent compressive and tensile testing, yielding essential data on the connectors’ normal and shear stiffness, as well as the mechanical properties of the Khorasan mortar. A three-dimensional model of the bridge was created in FLAC3D software using the finite difference method. Individual stone elements were modeled with brick and wedge components, incorporating experimentally derived stiffness values. The Mohr-Coulomb material model was applied to both the stone elements and the foundation soil, with non-reflecting boundary conditions set at the model’s edges. Ten different ground motion simulations were conducted to assess seismic behavior. The seismic analyses for the two models, with FRP and metal connectors in the arch, indicated that both types significantly improved the bridge’s seismic resistance. Results revealed that the use of FRP and iron mechanical connectors in the arch section substantially modified the bridge’s seismic response compared to the configuration without connectors. Besides, no major differences were observed between FRP and iron connectors in terms of enhancing seismic resilience of the bridge. The findings suggest that corrosion-resistant FRP connectors provide a durable alternative to metal connectors, which are prone to degradation over time. Thus, FRP connectors represent a promising option for the long-term seismic strengthening and restoration of historic bridges.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"175 ","pages":"Article 109544"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002857","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Historic bridges are invaluable cultural landmarks that embody the architectural and engineering achievements of past civilizations. Preserving these structures, which are often vulnerable to seismic activity, is essential to safeguarding cultural heritage for future generations. This study examines the Batıayaz Bridge, which sustained significant damage in the February 8, 2023, Kahramanmaraş earthquakes. Originally, iron connectors were used between stones in the arch section of the bridge. This research investigates the potential of using FRP (Fiber Reinforced Polymer) connectors as an alternative to iron for enhancing the seismic resilience of the arch. The bridge was reinforced with both FRP-metal clamps and dowel connectors, enabling a comparison of its seismic performance under each configuration. The connectors were carefully installed between stones with specialized adhesives and Khorasan mortar. Reinforced stone elements then underwent compressive and tensile testing, yielding essential data on the connectors’ normal and shear stiffness, as well as the mechanical properties of the Khorasan mortar. A three-dimensional model of the bridge was created in FLAC3D software using the finite difference method. Individual stone elements were modeled with brick and wedge components, incorporating experimentally derived stiffness values. The Mohr-Coulomb material model was applied to both the stone elements and the foundation soil, with non-reflecting boundary conditions set at the model’s edges. Ten different ground motion simulations were conducted to assess seismic behavior. The seismic analyses for the two models, with FRP and metal connectors in the arch, indicated that both types significantly improved the bridge’s seismic resistance. Results revealed that the use of FRP and iron mechanical connectors in the arch section substantially modified the bridge’s seismic response compared to the configuration without connectors. Besides, no major differences were observed between FRP and iron connectors in terms of enhancing seismic resilience of the bridge. The findings suggest that corrosion-resistant FRP connectors provide a durable alternative to metal connectors, which are prone to degradation over time. Thus, FRP connectors represent a promising option for the long-term seismic strengthening and restoration of historic bridges.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.