Operando synchrotron X-ray analysis of melt pool dynamics in an Al-Sn immiscible alloy

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Ahmad Zafari , Sai Pratyush Akula , Mogeng Li , Akane Wakai , Ashlee Gabourel , Samuel J. Clark , Kamel Fezzaa , Ian Gibson , Atieh Moridi
{"title":"Operando synchrotron X-ray analysis of melt pool dynamics in an Al-Sn immiscible alloy","authors":"Ahmad Zafari ,&nbsp;Sai Pratyush Akula ,&nbsp;Mogeng Li ,&nbsp;Akane Wakai ,&nbsp;Ashlee Gabourel ,&nbsp;Samuel J. Clark ,&nbsp;Kamel Fezzaa ,&nbsp;Ian Gibson ,&nbsp;Atieh Moridi","doi":"10.1016/j.addma.2025.104754","DOIUrl":null,"url":null,"abstract":"<div><div>The melt flow in an Al-50vol% Sn immiscible alloy, produced by single-track laser melting of Al and Sn elemental powders, was studied in real time. High-speed synchrotron X-ray imaging was used to track the movements of Al and Sn liquids, and also to examine elemental distributions in the laser tracks, complimented by electron microscopy after solidification. Key aspects, including melt pool geometry, keyhole instability, and flow dynamics (flow pattern and velocity), were examined using digital image analysis. Relatively deeper melt pools formed at 400 W and 300 mm/s exhibited greater stability, with smooth surfaces, consistent outward flow, and minor vortices near the keyhole. In contrast, shallower pools produced at higher scanning speeds (&gt;500 mm/s) demonstrated greater instability with increased surface waviness, and stronger velocity fluctuations, leading to numerous micro-vortices and increased Al-Sn heterogeneity. Velocity scale estimations, supported by experimental observations, examined the roles of vapour pressure, Marangoni effect, buoyancy, inertial, and surface tension forces in the flow. The results revealed that vapour pressure and mechanical waves dominated at high scanning speeds (shallow pools), while Marangoni forces were equally significant in deep pools at lower speeds (300 mm/s). Buoyancy was found to have minimal impact in both cases. Furthermore, the interaction between inertial and surface tension forces played a critical role in determining the degree of waviness of the pools’ surfaces. These findings offer valuable insights into melt pool dynamics during laser processing of immiscible alloys and other metallic systems using elemental powders, and provide guidance for developing high-fidelity computational fluid dynamics models.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"103 ","pages":"Article 104754"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001186","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The melt flow in an Al-50vol% Sn immiscible alloy, produced by single-track laser melting of Al and Sn elemental powders, was studied in real time. High-speed synchrotron X-ray imaging was used to track the movements of Al and Sn liquids, and also to examine elemental distributions in the laser tracks, complimented by electron microscopy after solidification. Key aspects, including melt pool geometry, keyhole instability, and flow dynamics (flow pattern and velocity), were examined using digital image analysis. Relatively deeper melt pools formed at 400 W and 300 mm/s exhibited greater stability, with smooth surfaces, consistent outward flow, and minor vortices near the keyhole. In contrast, shallower pools produced at higher scanning speeds (>500 mm/s) demonstrated greater instability with increased surface waviness, and stronger velocity fluctuations, leading to numerous micro-vortices and increased Al-Sn heterogeneity. Velocity scale estimations, supported by experimental observations, examined the roles of vapour pressure, Marangoni effect, buoyancy, inertial, and surface tension forces in the flow. The results revealed that vapour pressure and mechanical waves dominated at high scanning speeds (shallow pools), while Marangoni forces were equally significant in deep pools at lower speeds (300 mm/s). Buoyancy was found to have minimal impact in both cases. Furthermore, the interaction between inertial and surface tension forces played a critical role in determining the degree of waviness of the pools’ surfaces. These findings offer valuable insights into melt pool dynamics during laser processing of immiscible alloys and other metallic systems using elemental powders, and provide guidance for developing high-fidelity computational fluid dynamics models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信