Eco-friendly synthesis and multifunctional evaluation of silver nanoparticles using Boleophthalmus dussumieri mucus: Antibacterial, anticancer, and predictive modeling applications
Fahimeh Saberi , Ahmad Gharzi , Ashraf Jazayeri , Vahid Akmali , Khosrow Chehri , Naser Karimi , Nasrin Babajani , Muhammad Rizwan , Elahe Baratalipour
{"title":"Eco-friendly synthesis and multifunctional evaluation of silver nanoparticles using Boleophthalmus dussumieri mucus: Antibacterial, anticancer, and predictive modeling applications","authors":"Fahimeh Saberi , Ahmad Gharzi , Ashraf Jazayeri , Vahid Akmali , Khosrow Chehri , Naser Karimi , Nasrin Babajani , Muhammad Rizwan , Elahe Baratalipour","doi":"10.1016/j.jddst.2025.106843","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of eco-friendly silver nanoparticles has attracted significant attention from researchers, primarily due to their wide-ranging applications in contemporary medicine, having antioxidant, antimicrobial, and anticancer properties. In this study, green-synthesized AgNPs (MM-Ag NPs) using <em>Boleophthalmus dussumieri</em> mucus were prepared and characterized for their antibacterial, antibiofilm, antihemolytic, and anticancer properties. Characterization techniques UV–vis, SEM, TEM, and AFM confirmed that the nanoparticles were uniformly spherical, ranging from 10 to 30 nm. The nanoparticles showed a UV–visible absorption peak at 428 nm, indicating a successful reduction of AgNO<sub>3</sub>. FTIR analysis revealed bioactive molecules on their surfaces, while X-ray diffraction indicated a face-centered cubic structure, with a zeta potential of −16 ± 0.65 mV. MM-Ag NPs exhibited strong antibacterial activity against the confirmed bacterial strains, including <em>Escherichia coli</em>, <em>Pseudomonas aeruginosa</em>, and <em>Staphylococcus aureus</em>, with a notable 22 mm inhibition zone against <em>E. coli</em>. In cytotoxicity assays on MCF-7 cancer cells, an IC50 value of 48.73 % was recorded at 256 ppm, highlighting their anticancer potential. Biocompatibility tests demonstrated safety through membrane stabilization assays using red blood cells. Machine learning techniques were also applied to predict values related to <em>Citrobacter freundii</em> and <em>Morganella morganii</em> for MM-Ag NPs. The best model for predicting their concentrations was identified, showcasing the effectiveness of ML in enhancing research efficiency and reducing trial-and-error approaches. In conclusion, this study underscores the significant biological potential of AgNPs derived from <em>B. dussumieri</em> mucus as promising antimicrobial agents against bacterial infections; potential anticancer agents in cancer therapy, and eco-friendly candidates for drug delivery systems.</div></div>","PeriodicalId":15600,"journal":{"name":"Journal of Drug Delivery Science and Technology","volume":"108 ","pages":"Article 106843"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Delivery Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1773224725002461","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of eco-friendly silver nanoparticles has attracted significant attention from researchers, primarily due to their wide-ranging applications in contemporary medicine, having antioxidant, antimicrobial, and anticancer properties. In this study, green-synthesized AgNPs (MM-Ag NPs) using Boleophthalmus dussumieri mucus were prepared and characterized for their antibacterial, antibiofilm, antihemolytic, and anticancer properties. Characterization techniques UV–vis, SEM, TEM, and AFM confirmed that the nanoparticles were uniformly spherical, ranging from 10 to 30 nm. The nanoparticles showed a UV–visible absorption peak at 428 nm, indicating a successful reduction of AgNO3. FTIR analysis revealed bioactive molecules on their surfaces, while X-ray diffraction indicated a face-centered cubic structure, with a zeta potential of −16 ± 0.65 mV. MM-Ag NPs exhibited strong antibacterial activity against the confirmed bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, with a notable 22 mm inhibition zone against E. coli. In cytotoxicity assays on MCF-7 cancer cells, an IC50 value of 48.73 % was recorded at 256 ppm, highlighting their anticancer potential. Biocompatibility tests demonstrated safety through membrane stabilization assays using red blood cells. Machine learning techniques were also applied to predict values related to Citrobacter freundii and Morganella morganii for MM-Ag NPs. The best model for predicting their concentrations was identified, showcasing the effectiveness of ML in enhancing research efficiency and reducing trial-and-error approaches. In conclusion, this study underscores the significant biological potential of AgNPs derived from B. dussumieri mucus as promising antimicrobial agents against bacterial infections; potential anticancer agents in cancer therapy, and eco-friendly candidates for drug delivery systems.
期刊介绍:
The Journal of Drug Delivery Science and Technology is an international journal devoted to drug delivery and pharmaceutical technology. The journal covers all innovative aspects of all pharmaceutical dosage forms and the most advanced research on controlled release, bioavailability and drug absorption, nanomedicines, gene delivery, tissue engineering, etc. Hot topics, related to manufacturing processes and quality control, are also welcomed.