Federated Hyperdimensional Computing for hierarchical and distributed quality monitoring in smart manufacturing

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhiling Chen, Danny Hoang, Fardin Jalil Piran, Ruimin Chen, Farhad Imani
{"title":"Federated Hyperdimensional Computing for hierarchical and distributed quality monitoring in smart manufacturing","authors":"Zhiling Chen,&nbsp;Danny Hoang,&nbsp;Fardin Jalil Piran,&nbsp;Ruimin Chen,&nbsp;Farhad Imani","doi":"10.1016/j.iot.2025.101568","DOIUrl":null,"url":null,"abstract":"<div><div>In emerging smart manufacturing, the integration of the Internet of Things (IoT) and edge devices is essential for in-situ sensing, communication, and adaptive learning. Federated Learning (FL) leverages edge-cloud collaboration to preserve data privacy and minimize communication overhead compared to centralized models. However, conventional FL approaches face significant challenges in manufacturing: (1) non-Independent and Identically Distributed (non-IID) data and diverse feature distributions complicate local model training within hierarchical, complex industrial data structures; (2) directly overwriting local models with a global model during updates causes clients to lose critical task-specific information unique to their environments; and (3) transmitting model updates causes communication overhead, limiting scalability. We propose Federated Distributed Hyperdimensional Computing (<span><math><mi>FedDHD</mi></math></span>), an FL framework that employs Hyperdimensional Computing (HDC) to optimize communication for hierarchical manufacturing data. Unlike neural networks, HDC offers robust performance with lower computational demands and inherent resilience to noisy, non-IID data, enabling <span><math><mi>FedDHD</mi></math></span> to naturally handle data heterogeneity and reduce computational burdens on edge devices. <span><math><mi>FedDHD</mi></math></span> integrates a hierarchical graph-based learning model with a node pruning module to alleviate computational load and implements a novel client-cloud update strategy leveraging HDC’s high-dimensional representations to streamline synchronization, thereby minimizing communication costs and improving scalability. We validate <span><math><mi>FedDHD</mi></math></span> through a case study on machining using a Sinumerik edge device, focusing on the geometric quality assessment of two counterbore diameters. <span><math><mi>FedDHD</mi></math></span> achieved an F1-score of 95.3% and demonstrated performance improvements of up to 12.6% over state-of-the-art neural network-based FL methods, highlighting its superior efficiency and scalability in complex industrial settings.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101568"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000812","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In emerging smart manufacturing, the integration of the Internet of Things (IoT) and edge devices is essential for in-situ sensing, communication, and adaptive learning. Federated Learning (FL) leverages edge-cloud collaboration to preserve data privacy and minimize communication overhead compared to centralized models. However, conventional FL approaches face significant challenges in manufacturing: (1) non-Independent and Identically Distributed (non-IID) data and diverse feature distributions complicate local model training within hierarchical, complex industrial data structures; (2) directly overwriting local models with a global model during updates causes clients to lose critical task-specific information unique to their environments; and (3) transmitting model updates causes communication overhead, limiting scalability. We propose Federated Distributed Hyperdimensional Computing (FedDHD), an FL framework that employs Hyperdimensional Computing (HDC) to optimize communication for hierarchical manufacturing data. Unlike neural networks, HDC offers robust performance with lower computational demands and inherent resilience to noisy, non-IID data, enabling FedDHD to naturally handle data heterogeneity and reduce computational burdens on edge devices. FedDHD integrates a hierarchical graph-based learning model with a node pruning module to alleviate computational load and implements a novel client-cloud update strategy leveraging HDC’s high-dimensional representations to streamline synchronization, thereby minimizing communication costs and improving scalability. We validate FedDHD through a case study on machining using a Sinumerik edge device, focusing on the geometric quality assessment of two counterbore diameters. FedDHD achieved an F1-score of 95.3% and demonstrated performance improvements of up to 12.6% over state-of-the-art neural network-based FL methods, highlighting its superior efficiency and scalability in complex industrial settings.
面向智能制造分层分布式质量监控的联邦超维计算
在新兴的智能制造中,物联网(IoT)和边缘设备的集成对于原位传感、通信和自适应学习至关重要。与集中式模型相比,联邦学习(FL)利用边缘云协作来保护数据隐私,并最大限度地减少通信开销。然而,传统的FL方法在制造业中面临着重大挑战:(1)非独立和同分布(non-IID)数据和多样化的特征分布使分层复杂工业数据结构中的局部模型训练复杂化;(2)在更新过程中直接用全局模型覆盖本地模型会导致客户端丢失其环境特有的关键任务特定信息;(3)传输模型更新导致通信开销,限制了可扩展性。我们提出了联邦分布式超维计算(FedDHD),这是一个利用超维计算(HDC)来优化分层制造数据通信的FL框架。与神经网络不同,HDC具有较低的计算需求和对噪声、非iid数据的固有弹性,从而提供强大的性能,使FedDHD能够自然地处理数据异构并减少边缘设备的计算负担。FedDHD集成了基于分层图的学习模型和节点修剪模块,以减轻计算负荷,并实现了一种新颖的客户端-云更新策略,利用HDC的高维表示来简化同步,从而最大限度地降低通信成本并提高可扩展性。我们通过使用Sinumerik边缘装置进行加工的案例研究来验证FedDHD,重点关注两个顶孔直径的几何质量评估。与最先进的基于神经网络的FL方法相比,FedDHD的f1得分达到95.3%,性能提高高达12.6%,突出了其在复杂工业环境中的卓越效率和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信