Wenlong Hu , Lulu Yang , Shuzheng Zhang , Fuzheng Guo , Fangxin Wang , Shaohua Liu , Yu Cang , Bin Yang
{"title":"Harnessing mussel-inspired phenolic-iron complexes for strengthening carbon fiber reinforced polymer composite interfaces","authors":"Wenlong Hu , Lulu Yang , Shuzheng Zhang , Fuzheng Guo , Fangxin Wang , Shaohua Liu , Yu Cang , Bin Yang","doi":"10.1016/j.compositesb.2025.112466","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon fiber reinforced polymer composites (CFRPs) offer exceptional specific strength and lightweight characteristics due to the high-performance nature of carbon fiber. However, carbon fiber's chemical inertness results in weak interactions with the polymer matrix, which hinders the overall performance of the composites. Improving the interfacial properties has been a longstanding challenge in CFRPs development. Introducing nanomaterials along with chemical agents at the interface can enhance both physical and chemical interactions, facilitating better load transfer and more uniform stress distribution. Despite this, surface modification remains a complex process, and the lack of anchor bonds limits the effectiveness of chemical interactions. In this work, inspired by the crack-resistance mechanism of byssal cuticle through metal coordination bonds, we introduce a metal-phenolic network comprising ferric iron (Fe<sup>3+</sup>) and tannic acid (TA) onto the carbon fiber surface using a simple one-pot deposition method. This approach significantly enhances the interfacial properties of the composite. The Fe<sup>3+</sup>-TA complex forms nano-sized aggregates on the fiber surface, with their morphology controllable by adjusting the precursor concentration and pH. The multiple reactive groups on TA allow for the incorporation of a silane coupling agent, effectively creating a chemical bridge between the carbon fiber and the matrix, further improving interfacial properties through synergistic chemical and physical interactions. This metal-phenolic network not only simultaneously strengthens and toughens the interface by promoting mechanical interlocking but also provides multiple chemical anchor sites to bridge the two components, offering new insights into strategies for interfacial strengthening and regulation.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"300 ","pages":"Article 112466"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825003671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber reinforced polymer composites (CFRPs) offer exceptional specific strength and lightweight characteristics due to the high-performance nature of carbon fiber. However, carbon fiber's chemical inertness results in weak interactions with the polymer matrix, which hinders the overall performance of the composites. Improving the interfacial properties has been a longstanding challenge in CFRPs development. Introducing nanomaterials along with chemical agents at the interface can enhance both physical and chemical interactions, facilitating better load transfer and more uniform stress distribution. Despite this, surface modification remains a complex process, and the lack of anchor bonds limits the effectiveness of chemical interactions. In this work, inspired by the crack-resistance mechanism of byssal cuticle through metal coordination bonds, we introduce a metal-phenolic network comprising ferric iron (Fe3+) and tannic acid (TA) onto the carbon fiber surface using a simple one-pot deposition method. This approach significantly enhances the interfacial properties of the composite. The Fe3+-TA complex forms nano-sized aggregates on the fiber surface, with their morphology controllable by adjusting the precursor concentration and pH. The multiple reactive groups on TA allow for the incorporation of a silane coupling agent, effectively creating a chemical bridge between the carbon fiber and the matrix, further improving interfacial properties through synergistic chemical and physical interactions. This metal-phenolic network not only simultaneously strengthens and toughens the interface by promoting mechanical interlocking but also provides multiple chemical anchor sites to bridge the two components, offering new insights into strategies for interfacial strengthening and regulation.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.