{"title":"Magnitude-weighted goodness-of-fit scores for earthquake forecasting","authors":"Frederic Schoenberg","doi":"10.1016/j.spasta.2025.100895","DOIUrl":null,"url":null,"abstract":"<div><div>Current methods for evaluating earthquake forecasts, such as the <span><math><mi>N</mi></math></span>-test, <span><math><mi>L</mi></math></span>-test, or log-likelihood score, typically do not disproportionately reward a model for more accurately forecasting the largest events, or disproportionately punish a model for less accurately forecasting the largest events. However, since the largest earthquakes are by far the most destructive and therefore of most interest to practitioners, in many circumstances, a weighted likelihood score may be more useful. Here, we propose various weighted measures, weighting each earthquake by some function of its magnitude, such as potency-weighted log-likelihood, and consider their properties. The proposed methods are applied to a catalog of earthquakes in the Western United States.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100895"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221167532500017X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current methods for evaluating earthquake forecasts, such as the -test, -test, or log-likelihood score, typically do not disproportionately reward a model for more accurately forecasting the largest events, or disproportionately punish a model for less accurately forecasting the largest events. However, since the largest earthquakes are by far the most destructive and therefore of most interest to practitioners, in many circumstances, a weighted likelihood score may be more useful. Here, we propose various weighted measures, weighting each earthquake by some function of its magnitude, such as potency-weighted log-likelihood, and consider their properties. The proposed methods are applied to a catalog of earthquakes in the Western United States.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.