Solgenia—A test vessel toward energy-efficient autonomous water taxi applications

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Hannes Homburger , Stefan Wirtensohn , Patrick Hoher , Tim Baur , Dennis Griesser , Moritz Diehl , Johannes Reuter
{"title":"Solgenia—A test vessel toward energy-efficient autonomous water taxi applications","authors":"Hannes Homburger ,&nbsp;Stefan Wirtensohn ,&nbsp;Patrick Hoher ,&nbsp;Tim Baur ,&nbsp;Dennis Griesser ,&nbsp;Moritz Diehl ,&nbsp;Johannes Reuter","doi":"10.1016/j.oceaneng.2025.121011","DOIUrl":null,"url":null,"abstract":"<div><div>Autonomous surface vessels are a promising building block of the future’s transport sector and are investigated by research groups worldwide. This paper presents a comprehensive and systematic overview of the autonomous research vessel <em>Solgenia</em> including the latest investigations and recently presented methods that contributed to the fields of autonomous systems, applied numerical optimization, nonlinear model predictive control, multi-extended-object-tracking, computer vision, and collision avoidance. These are considered to be the main components of autonomous water taxi applications. Autonomous water taxis have the potential to transform the traffic in cities close to the water into a more efficient, sustainable, and flexible future state. Regarding this transformation, the test platform <em>Solgenia</em> offers an opportunity to gain new insights by investigating novel methods in real-world experiments. An established test platform will strongly reduce the effort required for real-world experiments in the future.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"328 ","pages":"Article 121011"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825007243","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous surface vessels are a promising building block of the future’s transport sector and are investigated by research groups worldwide. This paper presents a comprehensive and systematic overview of the autonomous research vessel Solgenia including the latest investigations and recently presented methods that contributed to the fields of autonomous systems, applied numerical optimization, nonlinear model predictive control, multi-extended-object-tracking, computer vision, and collision avoidance. These are considered to be the main components of autonomous water taxi applications. Autonomous water taxis have the potential to transform the traffic in cities close to the water into a more efficient, sustainable, and flexible future state. Regarding this transformation, the test platform Solgenia offers an opportunity to gain new insights by investigating novel methods in real-world experiments. An established test platform will strongly reduce the effort required for real-world experiments in the future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信