The hexapeptide functionalized gold nanoparticles protect against sepsis-associated encephalopathy by forming specific protein corona and regulating macrophage activation

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Zichen Song , Hongguang Chen , Wenfei Xu , Xiaoye Zong , Xiaoyu Wang , Yuting Ji , Jiameng Gong , Mimi Pang , Shan-Yu Fung , Hong Yang , Yonghao Yu
{"title":"The hexapeptide functionalized gold nanoparticles protect against sepsis-associated encephalopathy by forming specific protein corona and regulating macrophage activation","authors":"Zichen Song ,&nbsp;Hongguang Chen ,&nbsp;Wenfei Xu ,&nbsp;Xiaoye Zong ,&nbsp;Xiaoyu Wang ,&nbsp;Yuting Ji ,&nbsp;Jiameng Gong ,&nbsp;Mimi Pang ,&nbsp;Shan-Yu Fung ,&nbsp;Hong Yang ,&nbsp;Yonghao Yu","doi":"10.1016/j.mtbio.2025.101704","DOIUrl":null,"url":null,"abstract":"<div><div>Sepsis-induced systemic inflammatory responses can often lead to brain dysfunction with impaired cognitive function and mobility, known as sepsis-associated encephalopathy (SAE). Currently, there are no effective pharmacological therapeutics to treat SAE. Herein, we demonstrated the hexapeptide functionalized gold nanoparticles P12 that reduced SAE in septic mice with a dual mechanism to down-regulate systemic inflammation. We found that intraperitoneally administered P12 could target macrophages and regulate their inflammatory responses to decrease systemic inflammation and improve mice's cognitive function and mobility with SAE. Depleting peritoneal macrophages diminished the neuroprotective effects of P12 in SAE mice, suggesting macrophages as the effector cells for the neuroprotection by P12. In addition, the proteomic analysis revealed that P12 was capable of sequestering specific circulating inflammatory proteins in the blood of septic mice by forming a protein corona, contributing to the suppression of systemic inflammation. We also found that the local administration of P12 directly to the brain parenchyma effectively inhibited microglia activation and neuroinflammation in mice with SAE. This study provides an insightful understanding of the function and mechanisms of action of P12 in regulating sepsis-associated systemic inflammation and presents a new drug-free nanotherapeutic approach to treat SAE.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101704"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425002637","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis-induced systemic inflammatory responses can often lead to brain dysfunction with impaired cognitive function and mobility, known as sepsis-associated encephalopathy (SAE). Currently, there are no effective pharmacological therapeutics to treat SAE. Herein, we demonstrated the hexapeptide functionalized gold nanoparticles P12 that reduced SAE in septic mice with a dual mechanism to down-regulate systemic inflammation. We found that intraperitoneally administered P12 could target macrophages and regulate their inflammatory responses to decrease systemic inflammation and improve mice's cognitive function and mobility with SAE. Depleting peritoneal macrophages diminished the neuroprotective effects of P12 in SAE mice, suggesting macrophages as the effector cells for the neuroprotection by P12. In addition, the proteomic analysis revealed that P12 was capable of sequestering specific circulating inflammatory proteins in the blood of septic mice by forming a protein corona, contributing to the suppression of systemic inflammation. We also found that the local administration of P12 directly to the brain parenchyma effectively inhibited microglia activation and neuroinflammation in mice with SAE. This study provides an insightful understanding of the function and mechanisms of action of P12 in regulating sepsis-associated systemic inflammation and presents a new drug-free nanotherapeutic approach to treat SAE.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信