Bioactive multifunctional hydrogels accelerate burn wound healing via M2 macrophage-polarization, antioxidant and anti-inflammatory

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Erman Zhao , Xiuling Tang , Xitong Li , Jun Zhao , Saiying Wang , Gaofei Wei , Le Yang , Minggao Zhao
{"title":"Bioactive multifunctional hydrogels accelerate burn wound healing via M2 macrophage-polarization, antioxidant and anti-inflammatory","authors":"Erman Zhao ,&nbsp;Xiuling Tang ,&nbsp;Xitong Li ,&nbsp;Jun Zhao ,&nbsp;Saiying Wang ,&nbsp;Gaofei Wei ,&nbsp;Le Yang ,&nbsp;Minggao Zhao","doi":"10.1016/j.mtbio.2025.101686","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, more than 300,000 fatalities occur from burns annually, and burn-wound healing continues to present significant challenges owing to the wound's propensity for infections, heavy bleeding, poor angiogenesis, and persistent inflammatory responses. The immunomodulation of macrophage polarization toward the M2 phenotype facilitates the healing of burn wounds by controlling the tissue microenvironment and expediting the transition from the inflammatory phase to proliferation. Here, a polydopamine-mediated graphene oxide (GA), tannic acid (TA), and magnesium ion (Mg<sup>2+</sup>)-incorporated multifunctional gelatin (Gel) scaffold (GTMG) is developed to accelerate wound healing by modulating the inflammatory microenvironment of burn wounds. GA and Mg<sup>2+</sup> confer the scaffold with the conversion of M1-type to M2-type macrophages and vascular regeneration. TA and GA synergistically provide with antimicrobial capabilities to the hydrogel. Additionally, the multifunctional hydrogel shows strong hemostatic, anti-inflammatory and biocompatible properties. Due to its strong tissue adhesion and injectability, the hydrogel can also be used for various forms of dynamic burn wounds. <em>In vivo</em> research shows that the hydrogel may have hemostatic, anti-inflammatory, and M2-phenotypic macrophage-polarization effects, which increase the regeneration and repair effects of burn sites and shorten the burn-healing time. The results indicate that this multifunctional hydrogel offers a promising therapeutic approach for the treatment of burn wounds by altering the immunological microenvironment and accelerating the three phases of wound healing.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101686"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425002455","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, more than 300,000 fatalities occur from burns annually, and burn-wound healing continues to present significant challenges owing to the wound's propensity for infections, heavy bleeding, poor angiogenesis, and persistent inflammatory responses. The immunomodulation of macrophage polarization toward the M2 phenotype facilitates the healing of burn wounds by controlling the tissue microenvironment and expediting the transition from the inflammatory phase to proliferation. Here, a polydopamine-mediated graphene oxide (GA), tannic acid (TA), and magnesium ion (Mg2+)-incorporated multifunctional gelatin (Gel) scaffold (GTMG) is developed to accelerate wound healing by modulating the inflammatory microenvironment of burn wounds. GA and Mg2+ confer the scaffold with the conversion of M1-type to M2-type macrophages and vascular regeneration. TA and GA synergistically provide with antimicrobial capabilities to the hydrogel. Additionally, the multifunctional hydrogel shows strong hemostatic, anti-inflammatory and biocompatible properties. Due to its strong tissue adhesion and injectability, the hydrogel can also be used for various forms of dynamic burn wounds. In vivo research shows that the hydrogel may have hemostatic, anti-inflammatory, and M2-phenotypic macrophage-polarization effects, which increase the regeneration and repair effects of burn sites and shorten the burn-healing time. The results indicate that this multifunctional hydrogel offers a promising therapeutic approach for the treatment of burn wounds by altering the immunological microenvironment and accelerating the three phases of wound healing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信