{"title":"An in silico analysis of dicofol-induced neurotoxicity mechanisms in humans","authors":"Fuat Karakuş , Burak Kuzu","doi":"10.1016/j.ntt.2025.107447","DOIUrl":null,"url":null,"abstract":"<div><div>Dicofol (DCF) is an organochlorine pesticide that has recently been recognized as a persistent organic pollutant. This study begins by investigating the neurotoxicity of DCF and its metabolites through <em>in silico</em> tools. It subsequently explores the molecular mechanisms and key targets associated with DCF-induced neurotoxicity in humans by employing network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. The prediction results indicate that both DCF and its metabolites can traverse the blood-brain barrier, penetrating the central nervous system, and inducing neurotoxicity. A thorough analysis has identified 56 potential targets linked to DCF-induced neurotoxicity. Gene Ontology enrichment analysis revealed significant associations with pathways related to sodium ion transmembrane transport, sodium/potassium-exchanging ATPase complexes, and P-type calcium transporter activity. Pathway enrichment analysis suggests that DCF-induced neurotoxicity arises from disruptions in ion transport <em>via</em> P-type ATPases. Further examination of gene-gene and protein-protein interactions, along with centrality analysis, identified 11 hub targets, including ATP1A1, ATP1A2, ATP1A3, ATP1A4, ATP1B1, ATP1B2, and MAPK1, as key players. Notably, six of these targets are subunits of the Na<sup>+</sup>/K<sup>+</sup>-ATPase, a P-type ATPase. Molecular docking results demonstrated that DCF binds more effectively to the ATP1A3-ATP1B1 protein complex than to its natural ligand, ATP. These findings suggest that DCF may inhibit Na<sup>+</sup>/K<sup>+</sup>-ATPase through ATP1A3, resulting in an imbalance of sodium and potassium gradients and ultimately leading to neurotoxicity.</div></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"109 ","pages":"Article 107447"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036225000248","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dicofol (DCF) is an organochlorine pesticide that has recently been recognized as a persistent organic pollutant. This study begins by investigating the neurotoxicity of DCF and its metabolites through in silico tools. It subsequently explores the molecular mechanisms and key targets associated with DCF-induced neurotoxicity in humans by employing network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. The prediction results indicate that both DCF and its metabolites can traverse the blood-brain barrier, penetrating the central nervous system, and inducing neurotoxicity. A thorough analysis has identified 56 potential targets linked to DCF-induced neurotoxicity. Gene Ontology enrichment analysis revealed significant associations with pathways related to sodium ion transmembrane transport, sodium/potassium-exchanging ATPase complexes, and P-type calcium transporter activity. Pathway enrichment analysis suggests that DCF-induced neurotoxicity arises from disruptions in ion transport via P-type ATPases. Further examination of gene-gene and protein-protein interactions, along with centrality analysis, identified 11 hub targets, including ATP1A1, ATP1A2, ATP1A3, ATP1A4, ATP1B1, ATP1B2, and MAPK1, as key players. Notably, six of these targets are subunits of the Na+/K+-ATPase, a P-type ATPase. Molecular docking results demonstrated that DCF binds more effectively to the ATP1A3-ATP1B1 protein complex than to its natural ligand, ATP. These findings suggest that DCF may inhibit Na+/K+-ATPase through ATP1A3, resulting in an imbalance of sodium and potassium gradients and ultimately leading to neurotoxicity.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.