Assessing the feasibility of CRISPRa approaches to enhance protein-based biomaterial expression in bacterial systems for more efficient production

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Pablo Rodríguez-Alonso , Viktoriya Chaskovska , Desiré Venegas-Bustos , Alba Herraiz , Matilde Alonso , Jose Carlos Rodríguez-Cabello
{"title":"Assessing the feasibility of CRISPRa approaches to enhance protein-based biomaterial expression in bacterial systems for more efficient production","authors":"Pablo Rodríguez-Alonso ,&nbsp;Viktoriya Chaskovska ,&nbsp;Desiré Venegas-Bustos ,&nbsp;Alba Herraiz ,&nbsp;Matilde Alonso ,&nbsp;Jose Carlos Rodríguez-Cabello","doi":"10.1016/j.mtbio.2025.101720","DOIUrl":null,"url":null,"abstract":"<div><div>Recombinant protein production is crucial for biomedical and industrial applications; however, achieving high yields for complex protein-like biomaterials such as elastin-like recombinamers (ELRs) remains challenging. ELRs, protein-based polymers derived from tropoelastin, emulate the mechanical and bioactive properties of natural tissues, making them valuable for numerous uses. Despite their promise, implementing a sophisticated molecular system for ELR production in <em>Escherichia coli</em> involves overcoming multiple hurdles, including metabolic bottlenecks and low yields. In this study, we employed a CRISPR activation (CRISPRa) system to enhance ELR expression in <em>E. coli</em>. Although further optimization is required to reach industrial-scale outputs, our findings establish a proof of concept for taking advantage of CRISPRa to boost recombinamers yields. Such improvements represent a crucial step toward scalable production, facilitating the commercial adoption of ELRs and, in general, recombinamers not only in biomedical applications but also in broader industries that stand to benefit from these versatile biomaterials.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101720"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425002790","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recombinant protein production is crucial for biomedical and industrial applications; however, achieving high yields for complex protein-like biomaterials such as elastin-like recombinamers (ELRs) remains challenging. ELRs, protein-based polymers derived from tropoelastin, emulate the mechanical and bioactive properties of natural tissues, making them valuable for numerous uses. Despite their promise, implementing a sophisticated molecular system for ELR production in Escherichia coli involves overcoming multiple hurdles, including metabolic bottlenecks and low yields. In this study, we employed a CRISPR activation (CRISPRa) system to enhance ELR expression in E. coli. Although further optimization is required to reach industrial-scale outputs, our findings establish a proof of concept for taking advantage of CRISPRa to boost recombinamers yields. Such improvements represent a crucial step toward scalable production, facilitating the commercial adoption of ELRs and, in general, recombinamers not only in biomedical applications but also in broader industries that stand to benefit from these versatile biomaterials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信