Compositional analysis of alternative protein blends using near and mid-infrared spectroscopy coupled with conventional and machine learning algorithms
R. dos Santos , J. Cruz , I. Muñoz , P. Gou , A. Nordon , E. Fulladosa
{"title":"Compositional analysis of alternative protein blends using near and mid-infrared spectroscopy coupled with conventional and machine learning algorithms","authors":"R. dos Santos , J. Cruz , I. Muñoz , P. Gou , A. Nordon , E. Fulladosa","doi":"10.1016/j.saa.2025.126114","DOIUrl":null,"url":null,"abstract":"<div><div>The non-invasive real-time analysis of the composition of alternative, plant-based protein sources is important to control high moisture extrusion processes and ensure the quality and texture of the final extrudates used in the elaboration of meat analogues. This study aims to analyse the composition and presence of gluten in blended plant-based alternative protein sources from pulse, cereal and pseudocereal origin by means of near infrared spectroscopy (NIRS) and mid infrared spectroscopy (MIRS) using conventional and machine learning algorithms. Blends were prepared using five alternative protein sources (barley, wheat, fava bean, lupin, and buckwheat) and spectra were acquired using a low-cost and a benchtop near-infrared spectrometer, and a mid-infrared spectrometer. Using the acquired spectra, partial least square regression (PLSR), support vector machine discriminant analysis (SVM-DA), partial least square discriminant analysis (PLS-DA), and convolutional neural networks (CNN) were used to develop predictive models to determine the composition and to identify samples containing gluten. The protein, moisture, carbohydrates and fat content in blends of alternative protein sources was determined with a RMSEP of 1.59, 0.18, 1.41, and 0.19 %, respectively, when using the benchtop NIR spectrometer and PLSR. Gluten-free samples were identified with high sensitivity (0.85) and accuracy (0.93) using PLS-DA. The study demonstrated that infrared spectroscopy can be used to analyse the composition of blends of alternative protein sources including pulses, cereals, and pseudocereals, as well as to identify gluten-free samples.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"337 ","pages":"Article 126114"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004202","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
The non-invasive real-time analysis of the composition of alternative, plant-based protein sources is important to control high moisture extrusion processes and ensure the quality and texture of the final extrudates used in the elaboration of meat analogues. This study aims to analyse the composition and presence of gluten in blended plant-based alternative protein sources from pulse, cereal and pseudocereal origin by means of near infrared spectroscopy (NIRS) and mid infrared spectroscopy (MIRS) using conventional and machine learning algorithms. Blends were prepared using five alternative protein sources (barley, wheat, fava bean, lupin, and buckwheat) and spectra were acquired using a low-cost and a benchtop near-infrared spectrometer, and a mid-infrared spectrometer. Using the acquired spectra, partial least square regression (PLSR), support vector machine discriminant analysis (SVM-DA), partial least square discriminant analysis (PLS-DA), and convolutional neural networks (CNN) were used to develop predictive models to determine the composition and to identify samples containing gluten. The protein, moisture, carbohydrates and fat content in blends of alternative protein sources was determined with a RMSEP of 1.59, 0.18, 1.41, and 0.19 %, respectively, when using the benchtop NIR spectrometer and PLSR. Gluten-free samples were identified with high sensitivity (0.85) and accuracy (0.93) using PLS-DA. The study demonstrated that infrared spectroscopy can be used to analyse the composition of blends of alternative protein sources including pulses, cereals, and pseudocereals, as well as to identify gluten-free samples.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.