Compositional analysis of alternative protein blends using near and mid-infrared spectroscopy coupled with conventional and machine learning algorithms

IF 4.3 2区 化学 Q1 SPECTROSCOPY
R. dos Santos , J. Cruz , I. Muñoz , P. Gou , A. Nordon , E. Fulladosa
{"title":"Compositional analysis of alternative protein blends using near and mid-infrared spectroscopy coupled with conventional and machine learning algorithms","authors":"R. dos Santos ,&nbsp;J. Cruz ,&nbsp;I. Muñoz ,&nbsp;P. Gou ,&nbsp;A. Nordon ,&nbsp;E. Fulladosa","doi":"10.1016/j.saa.2025.126114","DOIUrl":null,"url":null,"abstract":"<div><div>The non-invasive real-time analysis of the composition of alternative, plant-based protein sources is important to control high moisture extrusion processes and ensure the quality and texture of the final extrudates used in the elaboration of meat analogues. This study aims to analyse the composition and presence of gluten in blended plant-based alternative protein sources from pulse, cereal and pseudocereal origin by means of near infrared spectroscopy (NIRS) and mid infrared spectroscopy (MIRS) using conventional and machine learning algorithms. Blends were prepared using five alternative protein sources (barley, wheat, fava bean, lupin, and buckwheat) and spectra were acquired using a low-cost and a benchtop near-infrared spectrometer, and a mid-infrared spectrometer. Using the acquired spectra, partial least square regression (PLSR), support vector machine discriminant analysis (SVM-DA), partial least square discriminant analysis (PLS-DA), and convolutional neural networks (CNN) were used to develop predictive models to determine the composition and to identify samples containing gluten. The protein, moisture, carbohydrates and fat content in blends of alternative protein sources was determined with a RMSEP of 1.59, 0.18, 1.41, and 0.19 %, respectively, when using the benchtop NIR spectrometer and PLSR. Gluten-free samples were identified with high sensitivity (0.85) and accuracy (0.93) using PLS-DA. The study demonstrated that infrared spectroscopy can be used to analyse the composition of blends of alternative protein sources including pulses, cereals, and pseudocereals, as well as to identify gluten-free samples.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"337 ","pages":"Article 126114"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004202","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The non-invasive real-time analysis of the composition of alternative, plant-based protein sources is important to control high moisture extrusion processes and ensure the quality and texture of the final extrudates used in the elaboration of meat analogues. This study aims to analyse the composition and presence of gluten in blended plant-based alternative protein sources from pulse, cereal and pseudocereal origin by means of near infrared spectroscopy (NIRS) and mid infrared spectroscopy (MIRS) using conventional and machine learning algorithms. Blends were prepared using five alternative protein sources (barley, wheat, fava bean, lupin, and buckwheat) and spectra were acquired using a low-cost and a benchtop near-infrared spectrometer, and a mid-infrared spectrometer. Using the acquired spectra, partial least square regression (PLSR), support vector machine discriminant analysis (SVM-DA), partial least square discriminant analysis (PLS-DA), and convolutional neural networks (CNN) were used to develop predictive models to determine the composition and to identify samples containing gluten. The protein, moisture, carbohydrates and fat content in blends of alternative protein sources was determined with a RMSEP of 1.59, 0.18, 1.41, and 0.19 %, respectively, when using the benchtop NIR spectrometer and PLSR. Gluten-free samples were identified with high sensitivity (0.85) and accuracy (0.93) using PLS-DA. The study demonstrated that infrared spectroscopy can be used to analyse the composition of blends of alternative protein sources including pulses, cereals, and pseudocereals, as well as to identify gluten-free samples.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信