Engineering the SrTiO3/CuO heterostructure nanocomposite by CNT for superior visible light-driven photocatalytic performance and hydrogen evolution

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Gita Asghari , Vahid Mahdikhah , Kooshan Kalantarian , Saeed Sheibani
{"title":"Engineering the SrTiO3/CuO heterostructure nanocomposite by CNT for superior visible light-driven photocatalytic performance and hydrogen evolution","authors":"Gita Asghari ,&nbsp;Vahid Mahdikhah ,&nbsp;Kooshan Kalantarian ,&nbsp;Saeed Sheibani","doi":"10.1016/j.envres.2025.121502","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a SrTiO<sub>3</sub>/CuO/CNT nanocomposite was synthesized through a co-precipitation to achieve better visible light photocatalytic performance. Analysis of X-ray diffraction (XRD) combined with field emission scanning electron microscopy (FESEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed a successful integration of CuO and CNTs into the SrTiO<sub>3</sub> nanoparticle. The modifications resulted in a smaller particle size while narrowing the bandgap to 2.85 eV. They enhanced electric charge capabilities with lower PL intensity, increased photocurrent density, and decreased charge transfer resistance. The photocatalytic performance was evaluated for both organic pollutant degradation and hydrogen production through water splitting. The nanocomposite demonstrated complete degradation of methylene blue (MB) within 60 min, with high efficiency for other pollutants like methyl orange (MO) and rhodamine B (RhB). A study of the mechanism using scavenger methods identified the type-II charge transfer while showing superoxide radicals act as main reactive species. The nanocomposite produced hydrogen with a rate of 1495 μmol/g.h. The degradation kinetics followed a pseudo-first-order model at low concentrations and a Langmuir-Hinshelwood model at higher levels, emphasizing the role of CNTs in enhancing charge transfer and degradation efficiency. The enhanced photocatalytic activity is attributed to the synergistic effects of CuO and CNTs, promoting efficient charge separation, extended visible light absorption, and faster electron transport. Stability tests confirmed the composite's durability, retaining 91 % efficiency after four cycles.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"276 ","pages":"Article 121502"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125007534","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a SrTiO3/CuO/CNT nanocomposite was synthesized through a co-precipitation to achieve better visible light photocatalytic performance. Analysis of X-ray diffraction (XRD) combined with field emission scanning electron microscopy (FESEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed a successful integration of CuO and CNTs into the SrTiO3 nanoparticle. The modifications resulted in a smaller particle size while narrowing the bandgap to 2.85 eV. They enhanced electric charge capabilities with lower PL intensity, increased photocurrent density, and decreased charge transfer resistance. The photocatalytic performance was evaluated for both organic pollutant degradation and hydrogen production through water splitting. The nanocomposite demonstrated complete degradation of methylene blue (MB) within 60 min, with high efficiency for other pollutants like methyl orange (MO) and rhodamine B (RhB). A study of the mechanism using scavenger methods identified the type-II charge transfer while showing superoxide radicals act as main reactive species. The nanocomposite produced hydrogen with a rate of 1495 μmol/g.h. The degradation kinetics followed a pseudo-first-order model at low concentrations and a Langmuir-Hinshelwood model at higher levels, emphasizing the role of CNTs in enhancing charge transfer and degradation efficiency. The enhanced photocatalytic activity is attributed to the synergistic effects of CuO and CNTs, promoting efficient charge separation, extended visible light absorption, and faster electron transport. Stability tests confirmed the composite's durability, retaining 91 % efficiency after four cycles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信