Mining and engineering of pyrroline-5-carboxylate reductase for biocatalytic production of l-pipecolic acid with self-sufficient cofactor recycling

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Shaoshuai Zhu , Binhao Wang , Guochao Xu, Ye Ni
{"title":"Mining and engineering of pyrroline-5-carboxylate reductase for biocatalytic production of l-pipecolic acid with self-sufficient cofactor recycling","authors":"Shaoshuai Zhu ,&nbsp;Binhao Wang ,&nbsp;Guochao Xu,&nbsp;Ye Ni","doi":"10.1016/j.mcat.2025.115081","DOIUrl":null,"url":null,"abstract":"<div><div><span>l</span>-pipecolic acid (<span>l</span>-PA) is an essential chiral intermediate for local anesthetics and macrolide antibiotics. To achieve more stable and cost-effective biosynthesis of <span>l</span>-PA from <span>l</span>-lysine (<span>l</span>-Lys), a cascade enzymatic pathway with self-sufficient cofactor recycling was developed, incorporating lysine-6-dehydrogenase (LysDH) and pyrroline-5-carboxylate reductase (P5CR). To overcome bottlenecks in the pathway, Ec-P5CR from <em>Enterococcus casseliflavus</em> was identified as a promising biocatalyst for enhancing <span>l</span>-PA production. For further improvement of <span>l</span>-PA yield, protein engineering was performed on Ec-P5CR. The resulting variant K261W, combined with Rp-LysDH from <em>Rhodobacter pomeroyi</em> DSS-3, achieved significantly enhanced yield of 93 % at 100 mM <span>l</span>-Lys, as well as an impressive yield of 83 % at 500 mM <span>l</span>-Lys. MD simulations revealed that improved hydride transfer efficiency was mainly responsible for the enhanced performance of K261W, leading to shorter distances between catalytic residues and substrates. This work paves the way for efficient and sustainable <span>l</span>-PA synthesis, showcasing the potential of enzyme optimization in industrial applications.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"579 ","pages":"Article 115081"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125002676","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

l-pipecolic acid (l-PA) is an essential chiral intermediate for local anesthetics and macrolide antibiotics. To achieve more stable and cost-effective biosynthesis of l-PA from l-lysine (l-Lys), a cascade enzymatic pathway with self-sufficient cofactor recycling was developed, incorporating lysine-6-dehydrogenase (LysDH) and pyrroline-5-carboxylate reductase (P5CR). To overcome bottlenecks in the pathway, Ec-P5CR from Enterococcus casseliflavus was identified as a promising biocatalyst for enhancing l-PA production. For further improvement of l-PA yield, protein engineering was performed on Ec-P5CR. The resulting variant K261W, combined with Rp-LysDH from Rhodobacter pomeroyi DSS-3, achieved significantly enhanced yield of 93 % at 100 mM l-Lys, as well as an impressive yield of 83 % at 500 mM l-Lys. MD simulations revealed that improved hydride transfer efficiency was mainly responsible for the enhanced performance of K261W, leading to shorter distances between catalytic residues and substrates. This work paves the way for efficient and sustainable l-PA synthesis, showcasing the potential of enzyme optimization in industrial applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信