Modulating Ionic Hysteresis to Selective Interaction Mechanism toward Transition from Supercapacitor-Memristor to Supercapacitor-Diode

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pei Tang, Pengwei Jing, Zhiyuan Luo, Kekang Liu, Wuyang Tan, Qianqian Yao, Zhancai Qiu, Yanghui Liu, Qingyun Dou* and Xingbin Yan*, 
{"title":"Modulating Ionic Hysteresis to Selective Interaction Mechanism toward Transition from Supercapacitor-Memristor to Supercapacitor-Diode","authors":"Pei Tang,&nbsp;Pengwei Jing,&nbsp;Zhiyuan Luo,&nbsp;Kekang Liu,&nbsp;Wuyang Tan,&nbsp;Qianqian Yao,&nbsp;Zhancai Qiu,&nbsp;Yanghui Liu,&nbsp;Qingyun Dou* and Xingbin Yan*,&nbsp;","doi":"10.1021/acs.nanolett.5c0059610.1021/acs.nanolett.5c00596","DOIUrl":null,"url":null,"abstract":"<p >The emerging ion-confined transport supercapacitors, including supercapacitor-diodes (CAPodes) and supercapacitor-memristors (CAPistors), offer potential for neuromorphic computing, brain–computer interface, signal propagation, and logic operations. This study reports a novel transition from CAPistor to CAPode via electrochemical cycling of a ZIF-7 electrode. X-ray absorption fine structure (XAFS) and electrochemical analyses reveal a shift from “ionic hysteresis” to “ionic selective interaction” in an alkaline electrolyte, elucidating the evolution of ionic devices. The CAPodes exhibit high rectification ratios, long cycling stability, and effective current blocking in reverse bias. Additionally, they are demonstrated in ionic logic circuits (“AND” and “OR” gates), with comparisons to traditional electronic diodes. This work advances the development of functional supercapacitors and iontronic devices for future capacitive computing architectures.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 13","pages":"5415–5424 5415–5424"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00596","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging ion-confined transport supercapacitors, including supercapacitor-diodes (CAPodes) and supercapacitor-memristors (CAPistors), offer potential for neuromorphic computing, brain–computer interface, signal propagation, and logic operations. This study reports a novel transition from CAPistor to CAPode via electrochemical cycling of a ZIF-7 electrode. X-ray absorption fine structure (XAFS) and electrochemical analyses reveal a shift from “ionic hysteresis” to “ionic selective interaction” in an alkaline electrolyte, elucidating the evolution of ionic devices. The CAPodes exhibit high rectification ratios, long cycling stability, and effective current blocking in reverse bias. Additionally, they are demonstrated in ionic logic circuits (“AND” and “OR” gates), with comparisons to traditional electronic diodes. This work advances the development of functional supercapacitors and iontronic devices for future capacitive computing architectures.

Abstract Image

调制离子迟滞到从超级电容-忆阻器到超级电容-二极管过渡的选择性相互作用机制
新兴的离子约束传输超级电容器,包括超级电容二极管(CAPodes)和超级电容记忆电阻器(CAPistors),为神经形态计算、脑机接口、信号传播和逻辑运算提供了潜力。本研究报告了通过ZIF-7电极的电化学循环从CAPistor到CAPode的新转变。x射线吸收精细结构(XAFS)和电化学分析揭示了碱性电解质中从“离子滞后”到“离子选择性相互作用”的转变,阐明了离子器件的演变。该电容器具有高整流率、长循环稳定性和有效的反向偏置电流阻塞。此外,它们在离子逻辑电路(“与”和“或”门)中进行了演示,并与传统电子二极管进行了比较。这项工作推进了功能超级电容器和未来电容计算架构的离子电子器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信